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When a flexible structure is to be controlled actively, optimum
performance is obtained by integrated, or simultaneous, design of the
structure and the controller, as opposed to the common practice of
designing the structure independently of control considerations and
then désigning a controller for a fixed structure. The primary design
objective from the structural point of view usually is to minimize
weight, while the control design objectives depend on the application.
An important requirement for a practical control system is robustness
with respect to uncertain plant parameters. This dissertation dis-
cusses robust compensator design for fixed structures, and simultaneous
control/structure design where the overall design objective combines
the weight of the structure and the robustness of the closed-loop

control system. For numerical optimization, robustness is represented

xxiii



by the sensitivity of the closed-loop eigenvalues with respect to un-
certain parameters. An example illustrates the closed-loop control
system with robust compensator, and two examples illustrate the optimal
designs of a flexible structure along with robust compensators. The
dissertation also compares different finite element models to determine

models most efficient for compensator design.
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Chapter |
INTRODUCTION

Recent years have seen increasing research in integrated control
and structural optimization. The primary motivation of this research
is control of large flexible space structures, which are becoming
larger and more flexible at the same time that their performance
requirements are becoming more stringent. The complexity of these
structures produces significant uncertainty in the parameters of such
structures due to changing environments and modeling inaccuracies.
Thus control/structure design methods are needed to produce high-
performance, robust controllers and light, complex structures.

Among references that address integrated control/structure design
are [Bl}, [J1]}, [L1], [M3], [M4], [N1] and [S2]. References [Bl] and
[J1] address an eigenvalue placement/optimization approach which
seeks to impose specified constraints upon the closed-loop eigenvalues
(without estimation) which are functions of structural and control
design variables, while minimizing the control gain norm. Reference
[S2] adresses the problem of minimizing a composite objective function
as a linear combination of structural objective (structural mass) and
control objective (standard quadratic performance index) subject to

frequency constraint.



The primary objective of this dissertation is to obtain robust

compensators by addressing the following two problems:

1. For a fixed structure, find controller and observer gains (design
variables) that minimize the sensitivities of the closed-loop
eigenvalues with respect to plant uncertainties (natural

frequencies) subject to eigenvalue constraints.

2. Find structural parameters along with controller and observer
gains that minimize an objective function which includes the
structural weight in addition to the sensitivities of the closed-

loop eigenvalues with respect to plant uncertainties, subject to

eigenvalue constraints.

In this research, robustness means insensitivity of the closed-1loop
performance with respect to plant uncertainties. Although there is a
vast literature on achieving robust designs using conventional control
theory approaches, to our knowledge the proposed approach is new.

The organization of the dissertation is as follows. Chapter 2
presents a brief discussion of finite element modeling of flexible
structures and presents an example in which the flexible structure
consists of an Euler-Bernoulli beam attached (cantilevered) to a rigid
rotating hub at one end and a point mass attached to the other end of
the beam. Sections 2.2 and 2.3 discuss Hermite spline and B-Spline
approximations of the structure; then Section 2.4 follows with a brief

summary of the normal mode method.




The first three sections of chapter 3 summarize some of the
standard results of the time-invariant linear-quadratic regulator
problem (LQR), the time-invariant optimal observer problem and the
time-invariant stochastic optimal linear-quadratic regulator problem
(1LQG). Sections 3.4 and 3.5 present equations for an efficient
solution of the closed-loop eigenvalue problem, which enable one to

evaluate the left and the right eigenvectors of the closed-loop system

by doing numerical analysis in R2n (the space of real 2n-vectors)

4n (the space of complex 4n-vectors) for Znth order plant

instead of C
and compensator. Chapter &4 presents an efficient method (Functional
Gains) of comparing approximation schemes for control of flexible
structures, and compares Hermite splines, B-splines and normal mode
approximations.

Section 5.1 of Chapter 5 derives the derivatives of closed-loop
eigenvalues in terms of controller and observer eigenvectors. Section
5.2 discusses some of the cases that cause the closed-loop designs to
be sensitive or insensitive with respect to plant uncertainties and
presents guidelines for less sensitive (i.e., more robust) control
designs, which are supported by an example in Section 5.3.

Chapter 6 addresses the problem of finding controller and
observer gains (design variables) that minimize the sensitivities of
the closed-loop eigenvalues with respect to plant uncertainties

(natural frequencies), subject to eigenvalue constraints but no side

constraints on the design variables, and Section 6.3 follows with an



example which demonstrates the effectivness of the first-order
sensitivity optimization of the closed-loop eigenvalues for
significantly increasing the robustness of the initial closed-1loop
design (LQG).

Chapter 7 addresses the problem of finding structural parameters
in addition to controller and observer gains that minimize an
objective function which includes the structural weight in addition to
the sensitivities of the closed-loop eigenvalues with respect to plant
uncertainties, subject to eigenvalue constraints and partial side
constraints on the design variables. Sections 7.2.1 and 7.2.2 present
examples in which optimization simultaneously reduces the structural
weight and increases the robustness of the initial LQG
compensator/structure designs. Chapter 8 summarizes the main
conclusions of Chapters 5, 6 and 7. Appendix A summarizes some
standard results involving derivatives of the eigenvalues and
eigenvectors of a matrix with respect to a parameter, and appendix B
compares analytic and finite difference gradients of the initial

design of Section 6.3.




Chapter ||

FINITE ELEMENT MODEL

In finite element modeling of structures, the continuous
structure is separated by imaginary boundaries into a number of
"finite elements", which are assumed to be interconnected at a finite
number of nodal points located on the boundaries (nodes), then a set
of functions is selected to define the state of displacement within
each of the finite elements in terms of the nodal displacement. These
functions can be used to obtain the kinetic and strain energies of the
structure in terms of the nodal displacement. Then Lagrange's
equations of motion can be used to evaluate the generalized mass and
stiffness matrices of the structure. In addition, it should be clear
that it is necessary to begin with an admissible displacement field
(interpolation functions) for the approximation.

An admissible displacement field for an element must have the
following characteristics:

1. It must have the zero strain states or the required number of rigid
body modes.

2. It must have sufficient degrees of freedom to allow the kinematic
continuity on the boundary of two adjusent elements.

3. It must have the constant strain state.

For more details on this topic, see [Z1].




To illustrate this method, we consider the structure shown in

Figure 2-1. An Euler-Bernoulli beam is cantilevered to a rigid hub at

one end and a point mass m, is attached to the other end of the beam.

The hub can rotate about its fixed center, point O.

strain energies of the structure are

3
]
[
[u
<

£

2/
0

<
"

where

T

\

v(s)

p

£

r

E

I(s)
A(s)

I =
o]

m1=

and subscript

2
+ 37 pA(s)v(s)
0

2ds + imlv(l)z,

2
EI(s)wSSds,

kinetic energy,

strain energy,

= velocity of a point on the beam,
density of the beam,

length of the beam,

radius of the hub,

modulus of elasticity,

= second moment of cross sectional area,
= cross sectional area of the beam,

hub moment of inertia about axis perpendicular to

through point 0,

point mass,

s indicates partial derivative with respect to s.

The kinetic and

(2.2)

page

The

square of the velocity of a point on the elastic axis of the beam is




(a)

(b)

Figure 2-1. (a) Flexible Structure. (b) Beam Cross Section.

v(s)?= [w(s)+[r+s]8]%+ [8w(s)]>. (2.3)
Neglecting higher order terms and substituting into (2.1) yields

T = }1062 + iml[&(z)+[r+z]é]2 (2.4)

['A . .
+ 31 pA(s)[w(s)+[r+s]8]%ds.
0




Next, consider the coordinate transformation shown in Figure 2-2,

where

s =c.+ x.. (2.5)

From (2.2),(2.4) and (2.5), it follows that

T = 51092 + 4 [w(2)+[r+2]0] (2.6)
n, L2, . .
+ %.X pb J hi(xi)[w(xi)+[r+ci+xi]8] dxi,
i=1 0
Ne zi 2
V=43 E/J I.(x,)w dx,_, (2.7)
. iV ik x, i
i=1 0 i7i

where n, is the number of beam elements, and subscript X indicates
partial derivative with respect to X Next, we define
= x. /.. .
§= x, /8, (2.8)

Substituting (2.8) into (2.6) and (2.7), we obtain

T = 31 6% + Im [w(2)+(r+)8]° (2.9)
ne 1 . ‘9
+ %iil Pbli IO hi(ii)[w(ii)+[r+ci+zi§i]9] dii,
V=3 g (E/23] Jl I, (5, )w> ,dE (2.10)
=1 . B T 1TITEESY '
where
= _1..3 (2.11)
hi(Ei) = hi(0)+[hi(1)'hi(0)]§i i=1, s Ms (2.12)
h (1) = b, (0) i=1, ..., 0l (2.13)



(b)

Figure 2-2. (a) Approximation of the Beam by Finite Elements.
(b) i~th Beam Element.




2.1 Hermite Splines

The displacement field for the beam element shown in Figure 2-2

is approximated as

3

.) = a,.+ a X,
w(xl) i 41x1’

2
1 .xi + a

.X.+ a
i 3i

24 (2.14)

where the generalized coordinate a represents rigid body transverse

1i

translation, and a,; represents rigid body rotation. There are four

generalized coordinates in this case because interelement continuity
in classical beam theory requires both transverse displacement and
slope be continuous at the boundary of two adjusent elements. The
constant strain mode in beam bending is the constant curvature change

which in embedded in a4, Thus, the displacement field is seen to

contain all the admissibility requirements.

It is desired to represent the displacement field in terms of the

nodal displacement, so that

3 T [ -
9 w(x;=0)
93 “’xgxfo)
- _ (2.15)
d35 wix=t,)
L 93 1 L wxixf‘i) J
or
q 1 0 0 o a, ]
94 0 1 0 0 a2i
= 2 .3 , (2.16)
33 T T Y
2
L q; ] Lo 1 20, 325 || a,, |

10




which implies that

- - - 3 ar ;
814 i 00 0,
3
| 1[0 4 0 0 923
=2| ap  ne2 .2 . (2.17)
831 | 23|73ty "2 3%y 4y (] 934
i
R R P B PR
In matrix form
(a;] = [B][q]. (2.18)

In view of (2.8) and (2.18), (2.14) yields

wED = [NED Ny () Ny (B N (B Tl (2.19)
where
N, (E.) = (283-382+1) - (2.20)
1it°1i i i ’ .
N, (5.) =8, (E3-28%4 ) (2.21)
2i’i it?i i ?i’? :
Na.(E.) = (-283+38%) (2.22)
3it’i i i’ :
o p3 .2

Substituting (2.19) into (2.9) and (2.10), and imposing the following

constraints:

W(El=0) =0, (2.24)

WE§£1=°) =0, (2.25)

w(gi=1) = w(£i+1=0) i=1, .y -1, | (2.26)

w£§£i=1) = W£§£i+1=°) i=1, ..., n -1, (2.27)
11




where n, is the number of beam elements, we obtain the kinetic and

strain energies of the structure in terms of the nodal displacements.
Now Lagrange's equations of motion can be used to derive the
generalized mass and stiffness matrices of the structure. Figure 2-3
shows the generalized degrees of freedom and the Hermite splines for
three beam element model. Note that the order of the generalized mass
and stiffness matrices of this structure evaluated by the Hermite

splines is [1+2ne]x[1+2ne].

12




(a)

o

(b)

Figure 2-3. (a) Hermite Splines for Three Beam Element Model.

(b) Generalized Degrees of Freedom.
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2.2 B-Splines

In the previous section we used Hermit splines to evaluate the
generalized mass and stiffness matrices of the structure. Note that
Hermite splines are third order polynomials which require transverse
displacement and slope to be continuous at the boundary of two
adjusent elements. On the other hand (cubic) B-splines do satisfy the
above conditions and in addition they require that the curvature
change or strain be continuous at the boundary of two adjusent
elements. To approximate the displacement of the beam element shown
in Figure 2-2 with the B-splines, consider equation (2.19) of the

previous section

WED = [NE) Ny B Ny (B N (D THayl, (2.28)
where
N..(§.) = (253-3£2+l) (2.29)
1it7i i i ’ :
N,.(§.,) =2 (53-2£2+E ) (2.30)
2i7i it?i i’i”? )
= (-or3 2
. 3.2

Substituting (2.28) into (2.9) and (2.10), and imposing the following

constraints
w(§,=0) =0, (2.33)
w£§£1=0) =0, (2.34)

14




w(Ei=1) = w(£i+1=0) i=1, ..., ne-l, (2.35)
w£££i=1) = w£§£i+1=0) i=1, ., n =1, (2.36)
wzi5§§i=l) =0 i= ne’ (2.37)

i=1, .y n =1, (2.38)

“g g 5T = v g (844070)

where ne is the number of beam elements, we obtain the kinetic and

strain energies of the structure in terms of the nodal displacements.
Now Lagrange's equations of motion can be used to derive the
generalized mass and stiffness matrices of the flexible structure.
Figures 2-4 and 2-5 show the generalized degrees of freedom and the B-
splines for three and four beam element model. Note that the order of
the generalized mass and stiffness matrices of this structure

evaluated by the B-splines is [1+ne]x[1+ne].

These matrices can also be obtained by performing a similarity
transformation on the generalized mass and stiffness matrices

evaluated by the Hermite splines. Consider the linear transformation

s = Udggs (2.39)

where Ays is the [Zne+1] generalized coordinate vector corresponding
to the Hermite splines, g is the [ne+1] generalized coordinate
vector corresponding to the B-splines, and U is the [Zne+1]x[ne+1]
linear transformation matrix evaluated by using the n, constraint

equations of (2.37) and (2.38). Then

15




T
Mg = UM, U (2.40)
K. =UK,U (2.41)
BS Kys '

where the subscript HS refers to the Hermite spline approximation
scheme, and the subscript BS refers to the B-spline approximation
scheme.

If one selects the transverse displacement of the nodes as the
generalized coordinates then each of the B-splines will span the
length of the beam (maximum support), but if one selects the linear
combination of the transverse nodal displacements as the generalized
coordinates then each of the B-splines will span four elements
(minimum support). Figure 2-6a shows the B-spline corresponding to

the generalized coordinate 9, which is the transverse displacement of

the fourth node of an eight element beam model. Figure 2-6b shows the
B-spline corresponding to the generalized coordinate

l ’ . . ] ’
[4q43 + q44+ iqas], which is the linear combination of the transverse

displacements of the third, the fourth and the fifth nodes of an eight
element beam model. For more details on this topic, see [R1] and

[S1].

16




(a)

(b)

Figure 2-4. (a) B-Splines for Three Beam Element Model.
(b) Generalized Degrees of Freedom.
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N\

(a)

Figure 2-5. (a) B-Splines for Four Beam Element Model.
(b) Generalized Degrees of Freedom.
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Figure 2-6.
Spline.

(a) Maximum Support B-Spline.
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(b) Minimum Support B-



2.3 Normal Modes

Consider the structural dynamic problem

Mq +Kq = 0, (2.42)
where M is a nXn mass matrix, K is a nXxn stiffness matrix, and q is a
generalized coordinate n-vector. Solution of (2.42) yields

w, i=1, ..., n,

é. i=1, ..., n,

. . . .t
where w, is the 1th natural frquency, and ¢i is the i h natural mode.

We normalize ¢i so that

¢IM¢i= 1 i=1, ..., n, (2.43)

and impose the coordinate transformation

q = & (2.44)

on (2.42), where

¢=[9, 9, ... ¢ 1, (2.45)
and n is the normal coordinate n-vector. Then we obtain

Mén + Kén = 0. (2.46)

Premultiplying . (2.46) by §T yields the decoupled differential

equations

. 2
ni+ w.n.= 0 i=1, ..., n. (2.47)

20




PARAMETER VALUE UNIT
hub radius bo 10 in
hub moment of inertia Io 102 slug.in2
beam length 1 102 in
beam mass per unit length m, 10-2 slug/in
2nd moment of cross sectional area I 4/3 in4
modulus of elasticity E 10 slug/in.sec2
damping coefficient o 10-3
point mass m, 1 slug

Table 2-1 Structural Data.

This coordinate transformation (normal coordinates) will be seen
to be very helpful in evaluating equations for sensitivity
optimization. Figure 2-7 shows the first three flexible natural mode
shapes (excluding the rigid-body mode) of a ten beam element model of

the structure shown in Figure 2-1.
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Figure 2-7. First Three Natural Modes of the Ten Beam Element Model.

(8) 2nd mode, (O) 3rd mode, (¢) 4th mode.
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Chapter Il
CONTROL DESIGN

3.1 Time-Invariant Optimal Linear-Quadratic Regulator Problem

In this section we summarize some of the results of the time-
invariant optimal linear-quadratic regulator problem. We assume that
the complete state x(t) of the plant can be accurately measured at all
times and it is available for feedback. For more details on this
topic, see [K1].

Consider the linear time-invariant state equation

;c(t) = Ax(t)+Bu(t), (3.1)
where
x(t) = 2nx1 state vector,
A = 2nX2n system matrix,
B = 2nXr actuator influence matrix,

u(t) = rxl control vector.
The quadratic performance measure is

I=1 [xT(t)ch(t) + uT(t)Rcu(t)]dt, (3.2)
0

where Qc is a 2nX2n nonnegative definite real symmetric state
weighting matrix, and Rc is an rXr positive definite real symmetric

input weighting matrix. The problem of determining an input u(t) for

23




(3.1) such that the quadratic performance measure (3.2) is minimal is

referred to as the time-invariant deterministic linear-quadratic
. . T .
optimal regulator problem, LQR. Note that the quantity x ch in
(3.2) is a measure of how fast one desires to bring the initial state
to the origin (zero state), and the quantity uTRcu is a measure of the

control effort. Therefore, the relative importance of the error in

state and the control effort is determined by the matrices Qc and Rc .

The steady-state optimal control vector u(t) for the time-
invariant deterministic optimal linear-qﬁédratic regulator problem is
generated by the linear control law

u(t) = -Fx(t), (3.3)
where

F=R '8P (3.4)

is the optimal control gain matrix, and the constant nonnegative
definite real symmetric matrix P satisfies the algebraic matrix
Riccati equation

PA + AP - PBR;lBTP + Q= 0. (3.5)

The solution of (3.5) can be obtained by defining the &4nx4n

matrix

A -BR"1B
Cc
I= . (3.6)

When Il has no eigenvalues with zero real part, then

24



PLANT

P x=Ax+Bu

x(t)

OPTIMAL
CONTROL
GAIN

Figure 3-1.
System.
_ -1
P = Wog¥ia
[A-BF]W12= -WIZA,
where
- A 0
me=w| g

W w

W W
y = [ 11 12
21 22

In (3.8)-(3.9), A is

eigenvalues of NI with

closed-loop optimal linear-quadratic regulator system matrix.

MATRIX
F

Block Diagram of the Optimal

J-

Linear-Quadratic Regulator

(3.7)

(3.8)

(3.9)

(3.10)

a 2nx2n matrix whose eigenvalues are the

positive real part,

and A-BF is the 2nX2n

Figure

3-1 shows the block diagram of the optimal linear-quadratic regulator

system.
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3.2 Time-Invariant Optimal Observer Problem

In this section we summarize some of the results of the time
-invariant optimal observer problem. For more details on this topic,
see [K1] and [M2].

Consider the linear time-invariant system equations

x(t)

= Ax(t)+w(t), (3.11)

y(t) = Cx(t)+v(t), (3.12)
where

x(t) = 2nx1 state vector,

w(t) = 2nXl state excitation noise vector,

y(t) = mXl observation or measurement vector,

v(t) = mXl observation or measurement noise vector,

A = 2nX2n system matrix,

c = mX2n measurement matrix.

The stochastic processes {w(t), t 2 tgy} and {v(t), t = t,} are
uncorrelated zero-mean gaussian white noises with covariance matrices

E[w(t)w (1)]

Qeé(t-t) T 2 ty, (3.13)

E[v(t)v)(1)] R 6(t-1) T2 t,, (3.14)

where E denotes the expected value, and 8§ denotes the Dirac delta

function. In addition, we assume that Qe is a 2nX2n positive
semidefinite real symmetric matrix, Re is an mxm positive definite

real symmetric matrix, and the initial state is a zero mean gaussian

random 2n vector independent of the state excitation noise and

26




observation noise.

The mean square filtering error is

~ ~

J[x(t]t)] = E[x] (t|t)x(t])], (3.15)
where

~

x(t]t) = x(t)-x(t|t) (3.16)
is the error in the filtered estimate of the state, and X(t|t) is the

filtered estimate of the state x(t) at time t 2 t, (initial time)
based on measurement over the interval [t,,t] (conditional

expectation). The problem of determining the filtered estimate of the

state at some time t 2 ty (initial time) based on measurments over the
interval [t,,t] such that the mean square error is minimized is

referred to as the optimal observer problem or Kalman-Bucy filtering
problem, KBF.
The steady-state optimal linear filtered estimate for the system

of equations (3.11) and (3.12) is generated by the relation

2= A§+G[y(t)-c§], (3.17)

where x=x(t|t), X(to|te)=0 and

G = FCTR;I (3.18)

is the optimal observer gain matrix. The constant nonnegative
definite real symmetric matrix P, covariance matrix of the filtering
error, satisfies the algeblaic matrix Riccati equation

AP + PAl- ﬁcTR;lcﬁ +Q.= 0. (3.19)
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3.3 Time-Invariant Stochastic Optimal Linear-Quadratic Regulator
Problem

In this section we summarize some of the results of the time-
invariant stochastic optimal linear-quadratic regulator problem. For
more details on this topic, see [K1] and [M2].

Consider the linear time-invariant system equations

x(t) = Ax(t)+Bu(t)u(t), (3.20)
y(t) = Cx(t)+v(t), (3.21)
where |
x(t) = 2nx1 state vector,
w(t) = 2nx1 state excitation noise vector,

y(t) = mX1l observation or measurement vector,

v(t) mX1l observation or measurement noise vector,

u(t) = rxl control vector,

A = 2nX2n system matrix,
B = 2nXr actuator influence matrix,
c = mX2n measurement matrix.

The stochastic processes {w(t), t 2 0 } and {v(t), t 2 0 } are

uncorrelated zero-mean gaussian white noises with covariance matrices

E[w(t)w (1)] Q8(t-1) T 20, (3.22)

E[v(t)v ()] = R_8(t-1) t

v

0, (3.23)

where E denotes the expected value, and § denotes the Dirac delta

function. In addition, we assume that Qe is a 2nX2n positive
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semidefinite real symmetric matrix, Re is an mXm positive definite

real symmetric matrix, and the initial state is a zero mean gaussian
random 2n vector independent of the state excitation noise and

observation noise.

The quadratic performance measure is

T
J=E(tim 1 J [x'()qx(t) + u (£)R u(t)]de), (3.24)
T 1 0

where Qc is a 2nX2n nonnegative definite real symmetric state

. Weighting matrix, and Rc is an rxr positive definite real symmetric

input weighting matrix. The problem of determining an input u(t) for
(3.20) and (3.21) such that the quadratic performance measure (3.24)
is minimal is referred to as the time-invariant stochastic optimal
linear-quadratic regulator problem, LQG.

The steady-state optimal control vector u(t) for the time-
invariant stochastic optimal linear-quadratic regulator problem is
generated by the linear control 1law

u(t) = -Fx(t), , (3.25)
where

F = R;IBTP (3.26)

is the optimal control gain matrix, and the constant nonnegative
definite real symmetric matrix P satisfies the algebraic matrix
Riccati equation

PA + AP - PBR;IBTP +Q=0. (3.27)
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The steady-state optimal linear filtered estimate for the system

of equations (3.20) and (3.21) is generated by the relation
X = AX+G[y(t)-CX]+Bu(t), (3.28)

where §=§(t]t), X(0]0)=0, and

G =PC

Selp=1
Re (3.29)

is the optimal observer gain matrix. The constant nonnegative

definite real symmetric matrix P, covariance matrix of the filtering

error, satisfies the algeblaic matrix Riccati equation

SaT

AP + PAT- BCTR™L

R_"CP + Q= 0. (3.30)

In view of (3.26) and (3.29), the optimal control gain matrix is
independent of all the statistical parameters in the problem, and the
optimal observer is independent of the matrices in the performance

measure, (separation principle). Figure 3-2 shows the block diagram

of the stochastic optimal linear-quadratic regulator system.
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EXCITATION
NOISE

+ w(t)
0 + u(t)

— T

OPTIMAL
CONTROL
GAIN

Figure 3-2. Block Diagram of the Stochastic Optimal Linear-Quadratic

Regulator System.

y(t)

MEASUREMENT
NOISE
* v(t)
x(t)
MEASUREMENT
i(tlt) OPTIMAL
: | OBSERVER
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3.4 Eigenvalues and Eigenvectors of the Closed-Loop System

In this section we derive equations for an efficient solution of
the closed-loop eigenvalue problem for any gains. We want to evaluate

the eigenvalues and the right and the left eigenvectors of the closed-
loop system by doing the numerical analysis in C2n (the space of

; ; 4 .
complex 2n-vectors) instead of C'n, where 4n is the dimension of the
closed-loop eigenvalue problem.

Consider the closed-loop system equations

(VI
]

Ax+Bu, (3.31)
y = Cx, (3.32)
X = AX+G(y-CX)+Bu, (3.33)
u = -FX, (3.34)

where

X = 2nX1l state vector,

»>
]

2nX1l filtered estimate of the state vector,
y = mX1l observation or measurement vector,

A = 2nX2n system matrix,

w
"

2nXr actuator influence matrix,
C = mX2n measurement matrix,

F = rX2n control gain matrix,

G = 2nXm observer gain matrix,

u = rXl control vector.

Combining (3.31)-(3.34), we obtain the closed-loop state equation
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z = Acgz,
where
X
Nt
X
A -BF
Ac£=[ ]
GC A-BF-GC

Next, consider the coordinate transformation

z = Tz,

where

N

L}
—
© »®
—

I 0
T=1"!= [ ].
I -1

In view of (3.38), (3.35) yields

z = Aclz’

where

_ A-BF BF
Acl = [ ]'
0 A-GC

(3.

(3

(3.

(3.

(3.

(3.

(3

(3

(3

This transformation shows that, as is well known, the spectrum of

is the union of the spectrum of [A-BF] and the spectrum of [A-GC].

refer to the eigenvalues of [A-BF] as the controller eigenvalues
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to the eigenvalues of [A-GC] as the estimator eigenvalues. Also, from
here on, we assume that the eigenvalues of Acz are distinct.

Here, we denote by Xe the 2nX2n matrix whose columns are the
eigenvectors of [A-GC], by Xc the 2nXx2n matrix whose columns are the
eigenvectors of [A-BF], and by Z the 4nx4n matrix whose columns are
the eigenvectors of Ac . Also, Ae is the 2nX2n diagonal matrix

containing the eigenvalues of [A-GC], Ac is the 2nX2n diagonal matrix

containing the eigenvalues of [A-BF], and Acl is the 4nX4n matrix

A= [ o A ]. (3.44)
e
Hence,
[A-BF]X = X A_, (3.45)
[A-GCIX = X A_, (3.46)
Kcli = EAcz’ (3.47)
AgZ =ZA_,. (3.48)

X XX

_ c c

Z = s
0 X (3.49)

e
where the 2nx2n matrix X satisfies
AX - XA = -X1BFX . (3.50)
c e c e
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Note that there exists a unique solution to (3.50) because, by

hypothesis, Ae and Ac have no eigenvalues in common. From (3.38) and

(3.49), it follows that

X X X
_ c c
Z=TZ = ~ ,
X (XX - X ) (3.51)
C C e J
-1 o.o-1. o ooa1
-1 {Xc ) Xxe ] X Xe
Z = .
x1 x1 (3.52)
e e
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3.5 Determining Right and Left Eigenvectors of the Closed-Loop

System with Real Arithmetic

Consider the closed-loop state equation

Aczz = kczz.

(3.

53)

Note that if Xcz is a complex eigenvalue of the closed-loop system

matrix, then icz is also an eigenvalue. Which implies

Aczz = Xcgz.

From (3.53) and (3.54), we see that

ACQX = 0¥ - wi,

of + w¥,

A =0 + juw,
z =% + j&.

In matrix form

_ o W
A ¥ E1=107% zl[_ ]

W o]

In view of (3.53) and (3.59), (3.48) yields

Aclzr= Zr#cl;

where
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and Tr is a block diagonal transformation matrix that stacks the real

and the imaginary parts of the right eigenvectors in columns of the

real matrix Zr' The diagonal elements of Tr corresponding to the real

closed-loop eigenvalues are identity (scalar), and the 2x2 diagonal

blocks of Tr correspondinr to the complex pairs are

3 [ D ] (3.63)
if the eigenvectors corresponding to the complex pairs are in adjusent
columns of matrix Z. Similar transformations can be applied to Xc and

Xe matrices so that

Xcr= XcTcr’ (3.64)

X =XT _. (3.65)
er ‘e er

From (3.44), (3.60)-(3.62), (3.64) and (3.65), we see that

Tcr 0
= [ o T ] (3.66)
er

In view of (3.51), (3.52), (3.64) and (3.65), (3.61) yields

X X X
cr cr'r
Zr= ~ s
Xcr [Xcrxr- Xer] (3.67)
S SRS | -1
-1 [Xcr xrxer] xrxer
Z_ = - - ’
r x~1 51 (3.68)
er er
where
37




Then the right and the left eigenvectors of the

Z =7 T'l,
rr

z7l= T 7271,
rr
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Chapter 1V
FUNCTIONAL GAINS

4.1 Functional Control Gains

In this chapter we compare convergence of three approximation
schemes using functional gains (Refs. G3 and G&4). Consider the
structure shown in Figure 2-1. A uniform Euler-Bernoulli beam is

cantilevered to a rigid hub at one end and a point mass m_, is attached

1
to the other end of the beam. The hub can rotate about its fixed
center, point O, and the control is a torque u(t) applied to the hub.
Here,‘we assume that the entire state vector is measured, so that no
estimation is required in the closed-loop system (full-state

feedback). The generalized displacement vector is
x(t) = [8, w(t,s), w(t,2)]. (4.1)

In [G3] and ([G4] we worked an optimal LQR problem for the

distributed model of this structure. The performance index is

J =1 [8%+ (Total Energy) + RuZ]dt, (4.2)
0

where total energy means kinetic energy plus elastic strain energy in

the structure, and R is the control weight. The optimal control has

the form

u(t) = -<£,x(£)>,=<g,x()>, (4.3)

39



A
\"
L}

> 2y strain-energy inner product,

A
\%
"

» >y kinetic-energy inner product.

In (4.3) f and g are functional control gains, which have the form

f = (af,o)f,Bf), (4.4)

()
|

= (a_,4 ,B), 4.5
‘ag¢gﬁg) (4.5)

where e, Bf,cg, 88 are scalars and ¢f, ¢8 are functions.

The functional control gains are obtained from the solution to an
infinite dimensional Riccati operator equation. Since such an
equation can not be solved in closed form, we approximate it with a

sequence of finite dimensional Riccati matrix equations. From the

solution to the nth Riccati matrix equations, we obtain the

approximate functional gains

fn = (“f ’¢f :Bf)a (46)
n n n

g = (a ¢ ,B
8n gn

gi, (4.7)

where n is the order of approximation. These functional gains are

linear combinations of the basis vectors in the approximation scheme.
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4.2 Numerical Results

The above example was modeled using three approximation schemes
discussed in Chapte 2. Namely, the Hermite spline, the B-spline and
the normal mode approximations, here the normal modes were obtained by
using 24 beam elements and Hermite spline approximation. Table 4-1
shows the structural data and the control weight R=0.05 in (4.2). The

order of approximation for these schemes are

Hermite splines n= 2ne+1,
B-splines n= ne+1,
normal modes n = number of modes,

where ne is the number of beam elements.

Here, we compare the convergence of the functional control gain

11
components ¢fn and ¢gn since the scalars « and ag converge at a

f
n n

faster rate, and the scalars

Be= 6.(0), (4.8)
n n
= . 4,
Bg= 95(8) (4.9)

Figures 4-1 through 4-3 show the functional control gains based on the

three approximation schemes. In each figure, the solid 1line

11
represents the converged functional gain component ¢fn or ¢gn’ and a

dashed line represents a functional control gain component

corresponding to a lower order of approximation. Note that s is the
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PARAMETER VALUE UNIT
hub radius T 10 in
hub moment of inertia Io 102 slug.in2
beam length 1 102 in
beam mass per unit length m, 10-2 slug/in
2nd moment of cross sectional area I 4/3 in4
modulus of elasticity E 104 slug/in.sec2
damping coefficient <, 10-4
point mass m, 1 slug
fundamental frequency of undamped structure| 0.967 rad/sec

Table 4-1 Structural Data .

spacial variable along the bending axis of the beam (Fig. 2-1), and
the nodes of the structure are marked with a different symbol for each
approximation order. ( (.)" indicates second derivative with respect

to s.)

For the Hermite spline approximation scheme, Figures 4-la and 4-1b

"
show the functional control gain component ¢fn and ¢gn evaluated by

using 4,6,8 and 10 beam element model. These figures indicate that
the functional .control gains converge for 8 beam element model; i.e.,

n=17. For the B-spline approximation scheme, Figures 4-2a and 4-2b

"
show the functional control gain component ¢ £n and ¢gn evaluated by

using 4,6,8 and 10 beam element model. These figures indicate that

the functional control gains converge for 8 beam element model; i.e.,
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n=9. Because cubic B-splines have continuous first and second

11
derivatives, the ¢fn is continuous at the nodes of the structure. For

the normal mode approximation scheme, Figures 4-3a and 4-3b show the

"
functional control gain component ¢fn and ¢gn evaluated by wusing

5,7,9,11 and 13 modes (including one rigid body mode). These figures
indicate that the functional control gains converge for 9 noraml mode
model; i.e., n=9.

Figures 4-1 through 4-3 indicate that the convergence of the B-
spline approximation is much faster compared to the convergence of the
Hermite splines. This will be our justification of using B-splines
for integrated structural and control optimization. Note that similar
functions (functional estimator gains) exist for observer gains (see
G3 and G4) which can be used with the functional control gains to
determine the convergence of the optimal compensators for distributed

models.
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Chapter Vv
SENSITIVITY OF CLOSED-LOOP EIGENVALUES AND ROBUSTNESS

5.1 First-Order Sensitivity of the Closed-Loop Eigenvalues
In Section 3.4 we assume that the plant is known exactly, so that
the matrices A, B and C in the compensator are the same as those in

the plant. Now we assume that the plant is a function of a parameter

B, so that
A = A(B), (5.1)
B = B(B), (5.2)
C = C(B). (5.3)

The compensator is designed for a nominal parameter value B,, and the

closed-loop system is

z = Acz(B)z, (5.4)
where the state z(t) is a 4n-vector, and

A(B) -B(BOF

A ®) =1 Ge(B)  [A(Be)-B(Bo)IF-GC(Bs)] | (5.5

ct

The gain matrices F and G are determined by some compensator design
philosophy.

When B = B,, we have the situation in Section 3.4. Here, we

study the first-order sensitivity of the eigenvalues of Acl(B) with
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X = Ax+Bu
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COMPENSATOR

=(A-BF-GC)X+Cy

M>-

A
u = -Fx

Figure 5-1. Closed-Loop System.

respect to an error between the true plant parameter B and the nominal

value B, assumed for compensator design. By standard results

{L1,P1,N1], we have

Aczz diag[z-lACQBZ], ' (5.6)

where diag[.] means the diagonal matrix with the same diagonal

elements, Acz is the 4nX4n diagonal matrix containing the eigenvalues

of Ac!’ Z is the 4nX4n matrix whose columns are the eigenvectors of

Acz, and

A -B,F
=3 = B B
Acls-.EBAcl— [ ]. (5.7)
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The subscript B always indicates the partial derivative with respect

to B. Using (3.51) and (3.52) for the nominal parameter value By, we

obtain
X X X
C C
Z(Bﬂ) = ~ ’
X, [XX-X] (5.8)
and
1 oo-1, o -1
1 [x-xx "1 xx )
Z (Bn) = - - ’
x~1 x1 (5.9)
e e

where Xe is the 2nX2n matrix whose columns are the eigenvectors of

[A(Bs)-GC(Bqo)], Xc is the 2nX2n matrix whose columns are the

~

eigenvectors of [A(Bg)-B(Bo)F], and the 2nx2n matrix X satisfies

~ ~

AX - XA = -X_'B(BoFK, (5.10)
where Ae is the 2nx2n diagonal matrix containing the eigenvalues of
[A(By)-GC(By)] (estimator eigenvalues) and Ac is the 2nX2n diagonal
matrix contaiqing the eigenvalues of [A(By)-B(By)F] (controller
eigenvalues). We assume that the eigenvalues of ACQ(B,) are distinct,

so that there exists a unique solution to (5.10). Note that the

spectrum of Acz(ﬁg) is the union of the spectrum of [A(B,)-B(B¢)F] and

the spectrum of [A(By)-GC(B,)]. Carrying out the multiplication in
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(5.6) yields

_ 3
Aoy (Bo)= gghcy (Be)

Fl 0
= dlag[ 0 rz ]

where
Ty = X [Ag(Ba)-Bg(BoFIX_
. ;X;l[AB(Ba)'BB(Bo)F'GCB(Bn)]xc
and
r, = X' (B0 )FX + X7} (A;(Ba)-By (Bo)F-GC4(Ba) X X.
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5.2 Sensitive and Insensitive Control Designs

Consider the following Taylor series expansion of a closed-loop

eigenvalue with respect to a parameter B

2
et = Aeg(Ba) + X (Bo)8B + 11 (B)8B + ... (5.14)
B BB
or
A
chz= xcl-xcz(a,) (5.15)
2
=X (Bo)8B + 1\ _(B,)dB + ..
clB 3 clBB
where
A
§8 = B-B,, (5.16)

and B, is the nominal value of B. For insensitive control designs, we

want

Re[8)_,(Ba) ] = 0 j=1, ..., 4n, (5.17)
]

where 4n is the dimension of the Acl matrix. Equation (5.11)

represents the first partial derivatives of the closed-loop
eigenvalues, and the second partial derivatives of the closed-1loop
eigenvalues follows from (A.17)

4n T T
‘g, = 2% [yjAclei][yiAclszj], j=1, ..., 4n, (5.18)

[xcl.- xc!.].
1 J
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where yj is the left eigenvector corresponding to xcl and z, is the

right eigenvector corresponding to Xcz . The objective of (5.17) can
i

be obtained to a certain extend by following certain guidelines in the

control design. In the following discussion, we drop the argument B,

for convenience. Consider the following cases:

1. X =+ for i =1, ., 2n.
c, of,
i i
2. X = ) for i=1, ..., 2n.
e, of,
i i
3. | XC- Xe | >0 for some i and j where i,j =1, ..., 2n.
i 7
4. | xclt xcl.l + 0 for some i and j, i#j and i,j =1, ..., &4n.
1 J
5. | Re(lcz? | >> | Im(kcl? | # 0 for some i, i = 1, ..., 4n.
i i
Where on is an eigenvalue of matrix A, Xc is a controller
i i

eigenvalue, Xe is an estimator eigenvalue, Re(.) implies to the real
i

part of a complex number and Im(.) implies to the imaginary part of a

complex number.
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A for i=1, .y 2n.

As the eigenvalues of [A-BF] matrix (controller eigenvalues) converge
to the eigenvalues of the open-loop system matrix A, the matrix

product BF converges to the null matrix. Consider equation (5.10)

~ ~

AX - XA = -X "BFX = 0. (5.19)
Cc e C e

For distinct closed-loop eigenvalues, (5.19) indicates that

X =0. (5.20)

(5.21)

where Aoz is the 2nx2n diagonal matrix containing the eigenvalues of

matrix A.

Case-2 '

A2 ) for i=1, ..., 2n.
e, of,
i i

As the eigenvalues of [A-GC] matrix (estimator eigenvalues) converge
to the eigenvalues of the open-loop system matrix A, the matrix

product GC converges to the null matrix. Consider equation (5.10)

~ ~

AX - XA = -X"1pFx . (5.22)
C e [o3 e

Adding identity to the right hand side, we obtain
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AX - XA = -x_'pFx + [x'lax - x"lax ]
Cc e Cc e C e Cc e
or
AX-xh =x1a-BR)x x71x ] - x71x ] x7lax .
Cc e (o} c C e Cc e e e

In view of (3.45) and (3.46), we see that

X" 1[A-BF]X = A ,
Cc C (o4

From (5.24) - (5.26), it follows that

~ ~

A x-x"1%x 7 - x-x"'x ]A=o0.
c C e Cc e e

For distinct closed-loop eigenvalues, (5.27) indicates that

or

LR |
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Case-3
| Xc- Xe | >0 for some i and j where i,j =1, ..., 2n.
i %
Consider equation (5.10)

~ o~ A
= x-1 =
AX - XA, = -X_"BFX = Q. (5.31)

From (5.31), it follows that

xij= ij for i,j=1, ..., 2n. (5.32)

Equation (5.32) indicates that the i-j element of the matrix X

approaches infinity like the reciprocal of the difference between the

ith controller eigenvalue and the jth estimator eigenvalue, except in

rare special circumstances. This element of X in general enters the
derivative of each closed-loop eigenvalue, according to (5.11), and
produces the large sensitivity when estimator eigenvalues are close to

controller eigenvalues.
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Case-4

| Xcz- Xcl | + 0 for some i and j, i#j and i,j = 1, ..., 4n.
L J

Equation (5.18) indicates that the second partial derivatives of the
closed-loop eigenvalues approache infinity like the reciprocal of the
difference between any two closed-loop eigenvalues, except in rare

special circumstances. Therefore, as | Xcz- Xcz | + 0 for some i and
i J

j, i#j, and i,j = 1, ..., 4n, then

| » -

BB

I Xcl

Kk for k=1, ..., 4n. (5.33)

Note: If an eigenvalue is complex with a small imaginary part then

1 1
- X = = large. (5.34)
| Xcz Xcz ) 2|Im(xcz)|
Case-5
| Re(kcz) P >> | Im(xcz) | # 0 for some i, i =1, ..., 4n.
i i

Consider the closed-loop state equation

Aczz = Xczz. (5.35)

Note that if Xcl is a complex eigenvalue of the closed-loop system

matrix, then icl is also an eigenvalue. Which implies

Aclz = Xczz, (5.36)
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where (T) indicates complex conjugate. From (5.35) and (5.36), we see

that
Aczx = 0¥ - wg, (5.37)
Aczz = of + wy, (5.38)
where
xcl= g + jw, (5.39)
z =% + jE. (5.40)

Note that (5.37) and (5.38) indicate that if
o | > w], (5.41)

then ¥ and ¢ become nearly linearly dependent. Which implies that

2T (5.42)

In general, elements of matrix Z-1 enter the derivative of each
closed-loop eigenvalue, according to (5.6), and produces the large

sensitivity when closed-loop eigenvectors become nearly linearly
dependent. Similarly, elements of X;l and X;l enter the derivative of

each closed-loop eigenvalue, according to (5.11), and produces the
large sensitivity when controller eigenvectors and/or estimator

eigenvectors become nearly linearly dependent.
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Guidelines

In summary, we present the following guidelines for less

sensitive control designs:

1. For smaller first partial derivatives of the closed-loop

eigenvalues, have

| A" xe | >> 0 i,j=1, ..., 2n. (5.43)
i 7]

2. For smaller second partial derivatives of the closed-1loop

eigenvalues, have

| Aeg= deg | >> 0 ifjand i,j =1, ..., 4n. (5.44)
i J

3. For less sensitive controller eigenvalues (eigenvalues of

[A(Bg)-B(By)F] matrix), have

x| > x| i=1, ..., 2n. (5.45)

4. For less sensitive observer eigenvalues (eigenvalues of

[A(Bg)-GC(By)] matrix), have

Px > x| i=1, ..., 2n. (5.46)

5. Keep the closed-loop, the controller and the estimator eigenvectors
from becoming nearly linearly dependent.
6. Increase number of actuators and/or sensors.
The following section illustrates the effect of large eigenvalue-
sensitivity and some of the above guidelines on robustness.
Robustness means insensitivity of the closed-loop performance with

respect to plant uncertainities.
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5.3 Example

The structure in Figure 2-1 consists of a uniform Euler-Bernoulli

beam cantilevered to a rigid hub at one end, with a point mass m,

attached to the other end of the beam. The hub can rotate about its
fixed center, point O, and the control is a torque u(t) applied to the
hub. There are two sensors, which measure the rigid-body angle 6 and

the displacement of the point mass m, , w(t,?).

In illustrating the effect of eigenvalue-sensitivity on

robustness, we use a finite element model of the structure,

constructed with three uniform beam elements and cubic B-splines as
interpolation functions (see Sec. 2.3 and Chapter 4). Because cubic
B-splines have continuous first and second derivatives, the three-
element model of the structure in Figure 2-1 has four degrees of
freedom, including the rigid-body mode.

We model Voigt-Kelvin viscoelastic damping in the beam, which
means that the damping matrix is a constant times the stiffness
matrix. We take the state vector x(t) to represent the modal
displacements and velocities of the three-element/four-mode model, so

that the matrix A is

0 I
A(B) = [ 892 -c,9? ] (5.47)

where Q is a 4x4 diagonal matrix containing the natural frequencies of

the model, co, is the damping coefficient and B is an uncertain

parameter with nominal value By= 1. The first element of Q is zero,
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corresponding to the rigid-body mode. When we refer to the natural
frequencies of the structure, we will mean the three nonzero elements
of Q only. We assume that the matrices B and C do not depend on B.

Of course, this model may not be sufficiently accurate for
designing a compensator for the real structure. In [G3, G&, G5], we
have studied the question of how accurate a finite element model is
necessary for compensator design and how many modes must be
represented in the estimator. While robustness with respect to
truncation errors is as important as robustness with respect to
parameter errors, we assume here that the three-element model is the
structure, to illustrate best the effect on robustness of the
eigenvalue-sensitivity discussed in the previous sections.

For our four-mode model of the structure, based on B,, we

designed a family of linear-quadratic-gaussian (LQG) compensators
(Sec. 3.3). The control gain for all compensators is computed with

e = 0.2, (5.48)
Rc= 0.01, (5.49)

and Qc such that

xTch =50062+ 2(Total Energy). (5.50)

Total energy means kinetic energy plus elastic strain energy in the

structure. The positive scalar @, (added to the diagonal element of
A(By) in the algebraic matrix Riccati equation 3.27) guarantees that

the eigenvalues of [A(B,)-BF] (the controller eigenvalues) have real
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PARAMETER VALUE UNIT
hub radius r 10 in
hub moment of inertia Io 102 slug.in2
beam length 1 102 in
beam mass per unit length m, 10-2 slug/in
2nd moment of cross sectional area I 4/3 in4
modulus of elasticity E 104 slug/in.sec2
damping coefficient R 10-3
point mass m, 1 slug
fundamental frequency of undamped structure| 0.967 rad/sec

Table 5-1. Structural Data.

parts to

The
computed

Q =
e

the left of e .
compensators differ in the estimator
with

variable = 0.0, 0.2, 0.4, ..., 3.8,

[ 10 0
|0 10 |°
[0 0
|0 I
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where each block in Qe is a 4X4 matrix. The positive scalar @, (added
to the diagonal element of A(By) in the algebraic matrix Riccati
equation 3.30) guarantees that the eigenvalues of [A(Bo)-GC] (the
estimator eigenvalues) have real parts to the left of e, Note that

each estimator is a Kalman-Bucy filter for the control system with A

replaced by [A(B,)+Iae].
We designed twenty estimators for the values of @, indicated in

(5.51), and with each of these estimators, we formed the closed-1loop

matrix Acl(s) in (5.5) for a range of B's. Our measure of robustness

for a compensator is how much B can vary, from the nominal value of 1,
before the closed-loop system becomes unstable; i.e., before some

eigenvalue of Acz(B) has nonnegative real part. Figure 5-2 summarizes

the results of the robustness test. The solid line connects the

eigenvalues of [A(B,)-BF], which are the same for each compensator.

(Only eigenvalues with positive imaginary parts are plotted.) For
each compensator, a dashed line connects the eigenvalues of

[A(By)-GC], and the number above each of these estimator eigenvalue

plots indicates the percent change in v B (from the nominal value of

1) at which the closed-loop system with that compensator becomes

unstable. We prefer to look at v B because it represents the change

in open-loop plant frequencies.
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The compensators that place the estimator eigenvalues close to
the controller eigenvalues produce a nonrobust closed-loop system,
allowing no more than -11% modeling error in the natural frequencies.r
As the distance between estimator eigenvalues and controller
eigenvalues increases, the robustness increases until the compensator
will tolerate wup to +22% frequency error and maintain a stable
closed-loop system. We have found that the most robust compensator
represented in Figure 5-2 also will tolerate up to +22% error in any
one of the three plant frequencies when the others remain at their
nominal values. It is important to note that the robustness increases
as the estimator eigenvalues move away from the controller
eigenvalues, even though the performance also increases in the sense
that estimator errors decay at faster exponential rates. (Guideline
number 1.)

Eventually, for a, > 2.6, the robustness starts to decrease

again. Close examination of our numerical results indicates that the
estimator eigenvectors approach linear dependence for the largest

values of a,, so that large terms enter the right sides of (5.12) and

(5.13) in the matrix X;l. This is another demonstration of the

relationship between robustness and sensitivity of closed-loop

eigenvalues with respect to parameter errors. (Guideline number 5.)
In general, as the real part of a conjugate pair of complex

eigenvalues becomes large negatively, the corresponding conjugate

pair of eigenvectors become nearly linearly dependent. In our
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example, this happens first for the eigenvalues nearest the real axis,

whose frequency is between 0.035 and 10-6 rather than zero, as the
graph might suggest. And it happens to a lesser extent for the pair
of eigenvalues with frequency approximately 1.

Another reason that the robustness cannot be improved more just
by moving all of the estimator eigenvalues farther to the left is that
the pairs of controller and estimator eigenvalues near the real axis
cause large second-order sensitivity in the closed-loop eigenvalues.
(Guideline number 2.) Note that second-order eigenvalue sensitivities
with respect to the uncertain parameter involve the reciprocal of the
difference of any two closed-loop eigenvalues.

To reduce both the first-order semsitivity produced by almost
lineafly dependent estimator eigenvectors and the second-order
sensitivity produced by closed-loop eigenvalues near the real axis, we

designed a new compensator with

= 0.02, (5.54)
R= 1.0, (5.55)
12 4 25 62 i o
T 35
Q= |======mesemscoodoniiemcocenoooo X1000, (5.56)
i
0 ; 0
@ = 0.25, (5.57)
_r1 0
R.= [ 0 1 Js (5.58)
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|
Q= |~cemmemena-- Fommmeceeena- x100. (5.59)
|
[
i

The resulting closed-loop eigenvalues are shown in Table 5-2. With

this compensator, the closed-loop system first becomes unstable at

v B = -50%, as opposed to -22% for the most robust compensator

represented in Figure 5-2.

Eigenvalues of [A(B,)~-BF] Eigenvalues of [A(B,)-GC]
-0.4221+i0.5805 -0.5347%£i0.1362
=0.5915+i1.0571 -1.2888+i2.2618
-0.6861+i3.3011 -2.2686+i5.7000
-0.6773%i7.3835 -12.914%£i13.902

Table 5-2. Closed-Loop Eigenvalues with Robust Compensator.

The above numerical results illustrate the significant effect
that the closed-loop eigenvalue sensitivity derived in Section 1 has
on robustness with respect to modeling errors. The results in Section
2 suggest and the example confirms that controller and estimator
eigenvalues should be separated for a robust design. Almost linearly
dependent estimator eigenvectors or controller eigenvectors and large

second-order eigenvalue-sensitivity diminish robustness also.
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In the example, we chose to move the estimator eigenvalues to the
left of the controller eigenvalues. While such relative placement of
controller and estimator eigenvalues is used frequently in compensator
design so that the faster decaying estimator error will make the
compensator approximate full-state feedback, we have seen no mention
in the literature of the relationship demonstrated here between
controller/estimator eigenvalue location and robustness. We have
found that, to improve robustness by reducing closed-loop eigenvalue
sensitivity, the eigenvalue separation may be achieved as well by
placing some or all of the controller eigenvalues sufficiently to the
left of nearby estimator eigenvalues or, not surprisingly, by
separating imaginary parts of eigenvalues. This is important in
controlling complex flexible structures, which often have 1lightly
damped modes along with heavily damped modes, making it impractical to
place all estimator eigenvalues to the left of all controller
eigenvalues.

Although the analysis in the previous sections and the example
deal with a single uncertain parameter, it should be clear that the
results apply to any number of parameters. The formulas in Section 1
give the sensitivities of the closed-loop eigenvalues with respect to

each parameter.
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Chapter VI

SENSITIVITY OPTIMIZATION FOR FIXED STRUCTURE

Consider the following Taylor series expansion of an eigenvalue

with respect to a parameter P
M(B) = A(Bo) + Ag(Bo)SB + $hgq (Ba)SB2 ... (6.1)
or
A 2
SX(B) = X(B)-X(By) = )\B(Bo)éﬁ + %XBB(BoﬁB + ..., (6.2)
where
B = wz, (6.3)
68 = B-B,, (6.4)

Bo is the nominal value of B, and w is a natural frequency. Using the
chain-rule, equation (6.2) can be expanded in terms of w as
2 4 2 2
6X(W)=ZWUXB(BQ)E+[2WQXBB(B°)+0J°XB(B°)]‘(: + ... N (6.5)
where

€ = (w/we)- 1. (6.6)

A closed-loop system is robust with respect to w if

Re[(GXC£§w)] =0 j=1, ..., 4n, (6.7)

where 4n is the dimension of the closed-loop eigenvalue problem.
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6.1 First-Order Sensitivity Optimization

froblem Statement

Find elements of the gain matrices F and G (design variables)

that minimize the first-order sensitivities of the

closed-1loop

eigenvalues with respect to plant uncertainties (natural frequencies),

subject to eigenvalue constraints but no side constraints on design

variables; i.e., choose F and G to minimize

4n 2§
IF,G)=( I [¥,2[Re(M_y)]u] }E,
i=1 **

subject to

Re(xc)2 S max Re(A_ ) < Re(xc)u i=1, ..., 2n,
i i i i
'] u
Re(le) < max Re(Xe ) £ Re(Xe) i=1, , 2n,
i i i i
. 1) .
min IIm(Xc)l > Im(kc) i=1, ..., 2n,
i i i
. g .
min IIm(Xe)I 2 Im(Xe) i=1, ..., 2n.
i i i

In (6.8)-(6.12),

) 9
V= 2 ... 2,
SBI aﬂn
T_ 2 2
W= [ W un])
2
Bi- wi’

and

F = rX2n control gain matrix,
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(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)




r = number of actuators,

=]
H

number of structural modes used in compensator design,

[p]
1

2nXm estimator gain matrix,

=]
]

number of sensors (measurement),

.th )

A =i controller eigenvalue,
I3 tt& » ]

A = i estimator eigenvalue,

Xc£= i h closed-loop eigenvalue,

.th . ,
W, = 1 uncertain plant parameter (natural frequencies),

¥ ith scalar weighting factor,

i

Re(.)

real part of a complex number,

Im(.) imaginary part of a complex number,

max(.) = maximum value,

min(.) = minimum value,
| .| = absolute value,

()t

lower bound,

(.)u = upper bound,

(.)e¢ = nominal value.
In problems with a rigid-body mode, Wy is zero and we use only the
sensitivities with respect to the nonzero frequencies in (6.8), so
2

that %E- and w, are not included in (6.13) and (6.14).
1
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6.2 Second-Order Sensitivity Optimization

Problem Statement

Find elements of the gain matrices F and G (design variables)

that minimize the second-order sensitivities of the

closed-loop

eigenvalues with respect to plant uncertainties (natural frequencies),

subject to eigenvalue constraints but no side constraints on design

variables; i.e., choose F and G to minimize
J(F,G)={.2 [Xilee(VXczilw

i=1

+ T, [207|Re(H.) |wtRe(VA_)|w] ] 3P
i i/ 1wrine cty ’

subject to

Re(xc)2 < max Re(A_ ) S Re(xc)u i=1, ..., 2n,
i i i i
£ u .
Re(ke) < max Re(Xe ) <€ Re(ke) i=1, ..., 2n,
i i i i
. L
min IIm(Xc)I 2 Im(kc) i=1, , 2n,
i i i
X L .
min [Im(le)l 2 Im(Xe) i=1, ..., 2n.
i i i

In (6.16),

H = hessian matrix,

Fi = scalar weighting factor.

74

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)
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Although we have some experience in this area, we have not been
able to achieve significant improvement using the second-order
sensitivity optimization compared to the first-order sensitivity
optimization. The most robust designs are obtained by using small

values of scalar weighting factors ( Fi<0.1, i=l, ..., 4n ) in the

objective function (6.16). Close examination of our results indicates
that there are considerable numerical errors involved in the second-
order sensitivities of the closed-loop eigenvalues (5.18), which are
due to the truncation errors in the closed-loop eigenvectors. It has
been our experience that in minimizing the first-order sensitivities
of the closed-loop eigenvalues with respect to natural frequencies,
one also significantly reduces the second-order sensitivities of the
closed-loop eigenvalues.

Because the second-order sensitivity optimization does not offer
significant improvement in robustness compared to the first-order
sensitivity optimization, and more efficient first-order sensitivity
numerical optimization, only the first-order sensitivity optimization

results are presented in the next section.
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6.3 Example
Consider the structure shown in Figure 2-1. A uniform Euler-
Bernoulli beam is cantilevered to a rigid hub at one end and a point

mass m1 is attached to the other end of the beam. The hub can rotate

about its fixed center, point O, and the control is a torque u(t)
applied to the hub. There are two sensors, which measure the rigid

body angle 8 and the displacement of the point mass m, w(t,?).

In {lInstrating the effectivness of first-order closed-loop
eigenvalue-sensitivity optimization on robustness, we use a finite
element model of the structure, constructed with ten identical beam
elements and cubic B-splines as interpolation functions (see Sec.
2.3). Because cubic B-splines have continuous first and second
derivatives, the ten-element model of the structure in Figure 2-1 has
eleven degrees of freedom, including the rigid-body mode.

We model Voigt-Kelvin viscoelastic damping in the beam, which
means that the damping matrix is a constant times the stiffness
matrix. Table 6-1 shows the structural data used for the
calculations. We take the state vector x(t) to represent the first
five modal displacements and velocities of the ten-element model, so

that the matrix A is

0 I
AQ) = [ 2 2 ] (6.21)
'Q 'CoQg

where @ is a 5x5 diagonal matrix containing the natural frequencies

(uncertain parameters) of the model, c, is the damping coefficient and
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PARAMETER VALUE UNIT
hub radius T 10 in

. . 2 . 2
hub moment of inertia I° 10 slug. in
beam length 1 102 in
beam mass per unit length m 10-2 slug/in
2nd moment of cross sectional area I 4/3 in4

. 4 . 2

modulus of elasticity E 5x10 slug/in.sec
damping coefficient <, 10-3
point mass m, 1 slug
fundamental frequency of undamped structure| 2.159 rad/sec

Table 6-1 Structural Data.

Qo is a 5x5 diagonal matrix containing the nominal natural frequencies

of the model. The first element of Q is zero, corresponding to the
rigid-body mode. When we refer to the natural frequencies of the
structure, we will mean the four nonzero elements of R only. We
assume that the matrices B and C do not depend on uncertain
parameters. (See Eqn. 5.5).

For our five-mode model of the structure, based on the nominal

values of the natural frequencies, we designed an initial linear-
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quadratic-gaussian (LQG) compensators (see Sections 3.3 and 5.3) with

a_= 0.0, (6.22)
R= 1.0, (6.23)
-8 -
5 1
10 | 0
100 1600 |
Q= [===m-mmmmemeoeees Frommmmmeeeeeees x1000, (6.24)
i
0 | 0
a= 0.3, (6.25)
B
1 o
R=10 1 ], (6.26)
0 : 0
|
S R Hmemecemccca-- x1000. (6.27)
|
10
0 S .
L ZOJ

We take the gain matrices F and G of the initial compensator and
use them as the initial guess in the first-order sensitivity
optimization problem of Sec. 6.1. For this example, we have the 1x10
control gain matrix F and the 10x2 estimator gain matrix G, so that
there are 30 (control) design variables. The scalar weighting factors

and lower bounds and upper bounds in (6.8)-(6.12) are

Re(Xc)u= 0.95xRe[X_(Fo)] i=1, ..., 2n, (6.28)
i i

Re(xe)“= -0.40
i

[
1]
-
-

., 2n, (6.29)
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Im(Xc)£= 0.20 i=1, ..., 2n, (6.30)
i
2 .

Im(ke) =0.20 i=1, ..., 2n, (6.30)
i

¥. = max [ 1 1 ] i=1 4n

i IRe(xcz)il 'Im(xczil (6.31)

Note that (6.28) indicates that the magnitude of the real part of the
controller eigenvalues can decrease by 5% only.

The optimum design was obtained by using the ADS optimizer (Ref.
V2), where the sequential unconstraineq minimization technique (SUMT)
using the exterior penalty function method, and Broydon-Fletcher-
Goldfarb-Shanno (BFGS) variable metric method for unconstrained
minimization of pseudo-objective function (created by the exterior
penalty function method) were selected, see [V1]. Also, the 30 design
variables were scaled by the ADS program, and finite difference
gradients were used in the optimization problem. Since there are
considerably more truncation errors involved in evaluation of the
closed-loop eigenvectors compared to the closed-loop eigenvalues, and
the gradient of the objective function (6.8) involves the first-order
sensitivity of the closed-loop eigenvectors with respect to the
natural frequencies, the finite difference gradients result in better
numerical optimization compared to the analytic gradients (see
Appendix B). The optimization converges in 1 SUMT iteration which
includes 22 unconstrained minimization (BFGS) iterationms. Figure

(6~1) shows the iteration history of the unconstrained minimization
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(BFGS) where the objective function J(F,G) (normalized with respect to
it initial value 10.5998) 1is reduced by 82%. For the optimized
design, only the constraint on the real part of the controller
eigenvalues (6.9) is active. Table 6-2 lists the design variables of
the initial and the optimized compensators. Table 6-3 and Figure 6-2
show the open-loop and the closed-loop eigenvalues of the initial and
the optimized designs. In Figure 6-2, the dashed lines connect the
eigenvalues of the initial design and the solid lines connect the
eigenvalues of the optimized design.

Our measure of robustness for a compensator is how much the
natural frequencies can vary, from their nominal values, before the
closed-loop system becomes unstable; i.e., before some eigenvalue of

Acz has nonnegative real part. The robustness of the closed-loop

eigenvalues was tested by varying the natural frequencies of the plant
by a constant percentage times a variation factor (1,0 or -1 for each
natural frequency), while maintaining the original damping of the
plant and the original natural frequencies in the compensator. Tables
6-4 through 6-7 present the robustness test results of the full-state
feedback and the closed-loop initial and optimized designs. (Full-
state feedback means that the entire state vector is measured, so that
no estimation is required in the closed-loop system.) Unless the term
full-state feedback is emphasized, by closed-loop design or
compensator we will mean a closed-loop design or a compensator which
uses estimation. In each one of the robustness tables, each row

represents nine full-state feedback or closed-loop designs where the
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Figure 6-1 Iteration History of the unconstrained minimization (BFGS)

81




INITIAL DESIGN OPTIMIZED DESIGN
Il Fy 61 %52 F1s 631 632
1 89.443 247 .57 0.7453 76.004 245.98 0.8780
2 -47.212 -0.0360 9.9207 -43.206 -0.0869 9.5176
3 -32.144 -0.0251 -0.3027 -122.42 -0.0811 0.1453
4 -56.023 -0.0028 0.0944 30.085 -0.0515 0.0741
5 -90.007 -0.0131 0.7929 -812.43 -0.0391 -0.8872
6 181.06 163.33 0.5014 185.84 165.15 0.6273
7 -24.205 -0.0593 27.796 -28.734 -0.0051 27.913
8 -12.242 -0.3045 35.710 -12.401 -0.2879 35.801
9 -15.444 -0.3024 34.285 -15.720 -0.2831 34.216
10 -17.147 -1.2148 136.14 -43.750 -1.2100 136.09

Table 6-2. Design Variables of the Initial and the Optimized
Compensators.

natural frequencies of the plant were perturbed by a percentage
(indecated by a percentage sign %) times a variation factor for each

natural frequency (listed in the left portion of the tables). 1In

"non 1"n_n

these tables, indicates a stable design and "x" indicates an

unstable design.
For the initial compensator, Table 6-4 indicates that the closed-
loop system with full-state feedback becomes unstable for 50%

variations in plant [requencies, and Table 6-6 shows that the closed-
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loop system with the compensator becomes unstable for 20% variations
in plant frequencies. For the optimized compensator, Table 6-5 shows
that the closed-loop system with full-state feedback becomes unstable
for 50% variations in plant frequencies, and Table 6-7 shows that the
closed-loop system with the compensator becomes unstable for 60%
variations in plant frequencies. This indicates a considerable
improvement (factor of 3) compared to the robustness of the initial
design. Note that the optimized compensator results in an unstable
closed-loop system only when the variations in natural frequencies are
such that the first and the second natural friquencies cross over. In
addition, note that the robustness of the optimized design is better
than the robustness of the full-state feedback initial and optimized
designs. For each of the above robustness tests, there are 720

variations. That is

N = [n}? -1]n,, (6.32)
where

N = 720 is the total number of variations,

n;= 3 is the number of variation factors (1,0 or -1),

n,= 4 is the number of uncertain parameters,
n;= 9 is the number of variation percentages (10%, ..., 90%).

Table 6-8 summarizes the number of variations out of 720 which result

in unstable designs.

In investigating robustness with respect to unmodeled modes, we

connected the initial and the optimized five-mode compensators (one at
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OPEN-LOOP CLOSED-LOOP EIGENVALUES
EIGENVALUES
CONTROLLER ESTIMATOR
0.0
=0.5415+i0.5580 -0.9598+10.5876
0.0

-0.0023%£i2.1583

-0.0258+i7.1826

=0.1212+i15.567

-0.4208+i29.007

a) Initial Design.

=0.5721+12.2293

=0.3937£17.1932

=0.5001+£i15.575

=0.7097+i29.012

-2.5932%1i5.0472

-8.0933%i12.011

-3.9348%+1i15.290

-8.5054%i29.711

OPEN-LOOP CLOSED-LOOP EIGENVALUES
EIGENVALUES
CONTROLLER ESTIMATOR
0.0
=0.5437+i0.4447 -0.9536+10.6092
0.0

-0.0023+£i2.1583

-0.0258+i7.1826

=-0.1212+i15.567

-0.4208+i29.007

-0.5528+i2.1675

-0.4901%£i7.5214

-0.4790+115.448

=1.2052%i29.340

-2.2813+i5.0528

-8.4082%+i10.656
=3.0969%i15.487

=6.7944%i33.110

b) Optimized Design.

Table 6-3. Open-Loop and Closed-Toop Figenvalues of the Initial
the Optimized Designs of the 5-Mode Compensators.
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Figure 6-2. Open-Loop and Closed-Loop Eigenvalues of the Initial and
the Optimized Designs of the 5-Mode Compensators.
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DESIGN NUMBER OF UNSTABLE
VARIATIONS FROM 720

initial full-state feedback 165
optimized full-state feedback 223
initial closed-loop (compensator) 226
optimized closed-loop (compensator) 27

Table 6-8. Number of Variations which Result in Unstable Designs.

a time) to the eleven-mode plant, and performed the robustness test by
varying first four natural frequencies of the plant by a constant
percentage times a variation factor (1,0 or -1 for each natural
frequency), while maintaining the original damping of the plant and
the original natural frequencies in the compensator. For the initial
compensator, the results of the robustness test are identical to those
of Table 6-6. For the optimized compensator, the results of the
robustness test are identical to the results in Table 6-7. These
robustness tests indicate that for this example the robustness of the
initial and the optimized compensators are insensitive to the
unmodeled modes, which is partially due to well separated natural
frequencies of the eleven-mode plant.

In comparing the performance of the initial and the optimized
compensators, we use the performance index discribed in Section 3.1,

repeated here for convenience

I =1 [xV(£)Q x(t)+ul ()R u(t)]dt. (6.33)
P 0 [~ Cc
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From (6.33), we see that

I= 343, (6.34)
where
3= 15 {xT(t)ch(t)]dt, (6.35)
I=15 [uT(t)Rcu(t) Jdt. (6.36)

Jx is the quantity we wish to control and Ju is the control effort.
In general, smaller values of Jx for a given initial condition

indicate that the initial state converges faster to the origin (zero
state). However, as indicated by Tables 6-10 and 6-12 and Figure 6-3,
this is not always the case. Tables 6-9 through 6-12 show the
performances of the initial and the optimized compensators for various
initial conditions. For the initial compensator, Table 6-9 shows the
performance of the initial five-mode compensator connected to the
five-mode plant, and Table 6-10 shows the performance of the initial
five-mode compensator connected to the eleven-mode plant. (In
evaluating the performance of a five mode compensator connected to an

eleven-mode plant, the terms in matrix Qc corresponding to the

additional plant modes are zero.) Note that Tables 6-9 and 6-10
indicate that the performance of the initial compensator is
insensitive to the unmodeled modes.

For the optimized compensator, Table 6-11 shows the performance
of the optimized five-mode compensator connected to the five-mode

plant, and Table 6-12 shows the performance of the optimized five-mode
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compensator connected to the eleven-mode plant. These tables indicate
that the performance of the optimized compensator is insensitive to
the unmodeled modes.

Figures (6-3) - (6-8) show the response of the rigid-body angle
8(t) and the control u(t) for various initial conditions. (All plots
have been scaled such that 6(0)=1.) In each Figure, the dashed lines
represent the time histories corresponding to the initial compensator
connected to the eleven-mode plant, and the solid lines represent the
time histories corresponding to the optimized compensator connected to
the eleven-mode plant. (For the initial and the optimized designs,
the time histories of the 5-mode plants connected to the 5-mode
compensators coincide with thoes shown in Figures 6-3 through 6-9.)
For the initial design, Figure 6-3 shows that the settling time of the
rigid-body angle is 10.05 seconds, which is 3.45 times the period of

the first flexible open-loop mode (T2=2.91 seconds). For the

optimized design, Figure 6-3 shows that the settling time of the
rigid-body angle is 6.80 seconds, which is 2.34 times the period of

the first flexible open-loop mode (T2=2.91 seconds). (The settling

time is the time required for the response curve to reach and stay
within #5% of its initial value.) Note that the overshoot present in

the rigid-body angle response is partially due to the tip mass m,

which is as heavy as the initial beam; i.e. m, = 1 slug. Although we

have improved the robustness of the initial design by factor of three,

Tables 6-10 and 6-12 indicate and Figuers 6-3 through 6-8 confirm that
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there is no significant difference in the performances (value of Jx)

of the optimized and the initial compensators.

97




INITIAL INITIAL COST x 10-'8
CONDITION | CONDITION

OF THE OF THE
STRUCTURE | ESTIMATOR J J J

p X u

l1st mode 1st mode 2.6937 2.3111 0.3826
1st mode 0 4.8392 3.5551 1.2841
2nd mode 0 0.0702 0.0302 0.0400
3rd mode 0 0.0702 0.0275 0.0427
4th mode 0 0.4195 0.2848 0.1347
S5th mode 0 4.2116 3.5246 0.6870

Table 6-9. Performance of the 5-Mode Initial Compensator Connected
to the 5-Mode Plant for Various Initial Conditions.

INITIAL INITIAL COST x 10-8 RESPONSE

CONDITION | CONDITION OF THE
OF THE OF THE RIGID-BODY
STRUCTURE | ESTIMATOR Jp Jx Ju ANGLE

1st mode 1st mode 2.6937 2.3113 0.3824 Fig. 6-3
1st mode 0 4.8392 3.5555 1.2837 Fig. 6-4
2nd mode 0 0.0699 0.0302 0.0397 Fig. 6-5
3rd mode 0 0.0700 0.0275 0.0425 Fig. 6-6
4th mode 0 0.4193 0.2849 0.1344 Fig. 6-7
5th mode 0 4.2121 3.5275 0.6846 Fig. 6-8

Table 6-10. Performance of the 5-Mode Initial Compensator Connected
to the 11-Mode Plant for Various Initial Conditions.
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INITIAL INITIAL COST x 10-8
CONDITION | CONDITION

OF THE OF THE

STRUCTURE | ESTIMATOR J J

) x u
1st mode 1st mode 2.7757 2.5227 0.2530
1st mode 0 4.4691 3.4190 1.0501
2nd mode 0 0.2242 0.0310 0.1932
3rd mode 0 0.2055 0.0219 0.1836
4th mode 0] 0.6307 0.2005 0.4302
S5th mode 0 6.2618 2.3757 3.8861
Table 6-11. Performance of the 5-Mode Optimized Compensator

Connected to the 5-Mode Plant for Various Initial Conditions.

o i
.- Ty A i Ey i Ny

INITIAL INITIAL COST x 10-8 RESPONSE
CONDITION CONDITION OF THE
OF THE OF THE RIGID-BODY
STRUCTURE ESTIMATOR Jp Jx Ju ANGLE
1st mode 1st mode 2.7758 2.5229 0.2529 Fig. 6-3
1st mode 0 4.4690 3.4193 1.0497 Fig. 6-4
2nd mode 0 0.2180 0.0309 0.1871 Fig. 6-5
3rd mode 0 0.2002 0.0218 0.1784 Fig. 6-6
4th mode 0 0.6221 0.2002 0.4219 Fig. 6-7
5th mode 0 6.2174 2.4009 3.8165 Fig. 6-8
Table 6-12. Performance of the 5-Mode Optimized Compensator
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SENSITIVITY AND STRUCTURAL WEIGHT OPTIMIZATION

7.1 First-Order Sensitivity and Structural Weight Optimization

Problem Statement

Chapter VIl

Find the elements of h (structural design variables), and the

gain matrices F and G (control design variables) that minimize (7.1),

which includes the structural weight and the first-order sensitivities

of the closed-loop eigenvalues with respect to plant uncertainties

(natural frequencies), subject to eigenvalue constraints and partial

side constraints on design variables; i.e., choose F, G and h to minimize

J(F’G’h)=[Jc(F’G:h)/Jc(Fo ;Gn :ho)]"'a[w(h)/w(hn)] ]

subject to

IA

2
Re(kc? max Re(kc.) <
i i i

IA

L
Re(ke? mgx Re(Xe.) <
i i i

m%n |Im(\c?|
i i

m%n lIm(Xe?l
i i

h*< b, < n®
1 1 1

In (7.1)-(7.6),

v

u
Re(Xc?
i

u
Re(Xe?
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and

J (F,G,h) ={.E [xizlne(vxcquu] }°, (7.7)
i=1 i
h = [ hl’ ceey hn 1, (7.8)
s
? ? '
V= [ EY . ]: (79)
B,
2 2
o= [ o, ...ow], (7.10)
2
Bi— W, (7.11)
F = rX2n control gain matrix,

r = number of actuators,

=]
[}

number of structural modes used in compensator design,

.
0

2nXm estimator gain matrix,
m = number of sensors (measurement),

JC(F,G,h) = control objective function,

W(h) = structural weight,

hi = ith structural design variable (cross-sectional height).
a = structural weight weighting factor,

.th ,
A =i controller eigenvalue,

.t . .
Xe= i h estimator eigenvalue,
i

XC2= ith closed-loop eigenvalue,
i

.th . ,
w. = i uncertain plant parameter (natural frequencies),
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¥. =1

n
S

num

Re(.)

Im(.)

max(.) =

.
, =
min(.) =

th

scalar weighting factor,
ber of structural design variables,

real part of a complex number,
imaginary part of a complex number,

maximum value,

|.] = absolute value,

H*

u

lower bound,

(.) " = upper bound,

(.)e¢ = nominal value.

In problems with a rigid-body mode, Wy is zero and we use only the

sensitivities

with respect to the nonzero frequencies in (7.1), so

2

that-%g— and w, are not included in (7.9) and (7.10).
1

1
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7.2 Example

In the following sections, we consider the structural model
described in Sec. 6.3 with the exception that the heights of the cross
sections at the beam nodes are also design variables. Here, the
initial structural design variables were selected so that the initial
structure was identical to that of Sec. 6.3, (uniform beam).

To illustrate the relationship between structural weight
optimizaton and performance, we design our compensators based on two
sets of structural modes. In Section 7.2.1, we control the first
4-modes of the structure with compensators based on four modes, and in
Section 7.2.2, we control the first 5-modes of the structure with
compensators based on five modes. In each of these sections, we
present three optimized designs which demonstrate the trade off
between the control objective function and the structural weight
minimization, and we present numerical results to compare the
robustness of one of the optimized compensator/structure designs with
the robustness of the initial design. Also, we compare the
performance of the optimal and initial designs by computing quadratic

performance indices and time histories for certain initial conditions.
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7.2.1 Four-Mode Compensator Example
We take the state vector x(t) to represent the first four modal

displacements and velocities of the ten-element model, so that the

matrix A is

0 I
AQ) = [ g’ 2 ] (7.12)

'Conu

where Q is a 4X4 diagonal matrix containing the natural frequencies

(uncertain parameters) of the model, c, is the damping coefficient and
Qo is a 4x4 diagonal matrix containing the nominal natural frequencies

of the model. The first element of Q is zero, corresponding to the
rigid-body mode. When we refer to the natural frequencies of the
plant, we will mean the three nonzero elements of Q only. We assume
that #he matrices B and C do not depend on uncertain parameters. (See
Egqn. 5.5).

For our four-mode model of the initial structure, based on the
nominal values of the plant natural frequencies, we designed an
initial linear-quadratic-gaussian (LQG) compensators (see Sections 3.3

and 5.3) with

a = 0.0, (7.13)
R= 1.0, (7.14)
°s 10 ' 0
100 |
Q= [=-----meooe-- Fosmmemoosooes x1000, (7.15)
0 : 0
a = 0.3, (7.16)
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[ 1 0
R=1| o 1 ], (7.17)

0 0

|
Q= |=m=mmmmmmm e x1000. (7.18)
1
| 10 1
L ! 1

To demonstrate the trade off between the control objective

JC(F,G,h) and the structural weight W(h) minimization, consider three

optimization problems where the objective functions are constructed
with a = 2, 3 and 5 in (7.1). Since we use the ten element model of
the structure, we have 11 structural design variables (the heights of
the cross sections at the beam nodes). Also, we have the 1X8 control
gain matrix F and the 8X2 estimator gain matrix G, so that there are
24 control design variables. Therefore, we have a total of 11+24 = 35
design variables. The scalar weighting factors and lower bounds and

upper bounds in (7.1)-(7.6) are

Re(xc)“= 0.90XRe[X_(Fo,hs)] i=1, ..., 2n, (7.19)
i i
Re(xe)“= -0.40 i=1, ..., 2n, (7.20)
i
] o
Im(A ) = Q.20 i=1, ..., 2n, (7.21)
i
L .
Im(A ) = 0.20 i=1, ..., 2n, (7.22)
i
¥. = max [ L 1 ] i=1 4n
RS ’ - 3 vy )
i IRe(Xczil IIm(Xczil (7.23)
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L .

h{= 0.25 i=1, ..., n, (7.24)

h'= 3.0 i=1 (7.25)
i . > +ees D .

Note that (7.19) indicates that the magnitude of the real part of the
controller eigenvalues can decrease by 10% only.

Each of the optimized designs were obtained by using the ADS
optimizer (Ref. V2), where the sequential unconstrained minimization
technique (SUMT) using the exterior penalty function method, and
Broydon-Fletcher-Goldfarb-Shanno (BFGS) variable metric method for
unconstrained minimization of pseudo-objective function (created by
the exterior penalty function method) were selected, see [V1]. Also,
the 35 design variables were scaled by the ADS program, and finite
difference gradients were used in the optimization problems. Each of
the three optimization problems converges in 1 SUMT iteration which
includes fewer than 45 unconstrained minimization (BFGS) iteratioms.
The constraint on the real part of the controller eigenvalues (7.19)
and the side constraint corresponding to the height of the cross-
section at the last beam node (tip end) are active for all three
optimized designs. Table 7-1 shows the numerical values of the
control objective functions and the structural weights. 1In general,
larger values 6f a result in more structural weight and less control
objective function reduction. However, there are some exceptions due
to the complexity of the numerical optimization and nonlinearity of
the objective function, as indicated by Case B of Table 7-1. Figure

7-1 shows the initial and the three optimized substructures (beams).
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INITIAL DESIGN OPTIMIZED DESIGN ITERATION
CASE | a HISTORY
FIGURE
W J J W J J
c c

A 2 | 1.000 | 12.42 | 3.000 | 0.585 1.274 | 1.273 -

B 3 1.000 | 12.42 | 4.000 | 0.601 | 1.016 1.884 -

c 5 1.000 | 12.42 | 6.000 | 0.540 | 1.824 | 2.845 7-2,7-3

Table 7-1. Control Objective and Structural Weigth of the Initial
and Three Optimized Designs with 4-Mode Compensators.

- - - INITIAL BERM
OPTIMIZED BERM
----- rdndiu afeiasidl thebefeiadh it Shafiadouibnts Shalinfintint Senfidiafiedis Sty e
[ ' | ] ! ' |
[ ' [ : : — ! ' )
1 1 1 1 ! 1 ' N___i
1 1 ' ' i 0 | !
—t A 1 — I i — 1 i — 1 1 —_—
(R)
—Sedudnd sintutntnt. il stk tiafieiiad thafedsad Sadhbaiiadi Shniadiatintis Seiindindis Sethaidiatis |
T T 1 | t ' ! 1 1 1
! 1 1 T . i L | ! [
r\l 1 1 1 ! t t '
! 1 | ! i ' ! 7\:\|
e 1 L — 1 i — i 1 _ 1 1 —_—
(B)
udiutuiel ahuthstesind siadindeaind didiadilh Sdhaiadiath Shafbnfniadh Shniintiafbnty Sadfinfeniis Sadieiadindie Befiaaiiadie
! ' | 1 ' 1 1
L i ! [} 1 ! 1
t t t [ \]I
i ' ' ! l 1
— 1 1 — 1 1 —_— 1 1 —_
(C)

Figure 7-1. The Initial and Three Optimized substructures (Beams).
(A) a =2, (B) a =3, (C) «a =5. (4-mode compensators.)
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The initial substructure is drawn in dashed line and an optimized
substructure is drawn in solid line. (Only the portion of a beam over
the center-line is shown.)

To see the effect of first-order closed-loop eigenvalue
sensitivity and structural weight optimization on robusﬁness, consider
for example Case C (a=5) of the three optimized designs. For this
case, the optimization converges in 1 SUMT iteration which includes 33
unconstrained minimization (BFGS) iterations. Figure (7-2) shows the
unconstrained minimization (BFGS) iteration history of the objective
function where J(F,G,h) (normalized with respect to it initia value
6.0) 1is reduced by 53%. Figure (7-3) shows the unconstrained
minimization (BFGS) iteration histories of the control objective

function and the structural weight, where JC(F,G,h) (normalized with

respect to it initia value 12.42) is reduced by 85% and w(h)
(normalized with respect to it initia value 1.0) is reduced by 46%

Table 7-2 1lists the natural frequencies and the structural design
variables of the initial and the optimized structures, Table 7-3 lists
the control design variables of the initial and the optimized
compensators. Figure 7-4 shows first three flexible mode-shapes of
the initial and the optimized structures. In this figure, nodes of
the initial structure are marked with squares and nodes of the
optimized structure are marked with circles. Note that Fig. 7-2 also
shows the increased flexibility of the optimized design due to its
significant weight reduction. Table 7-4 and Figure 7-5 show the open-

loop and the closed-loop eigenvalues of the initial and the optimized
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designs. In Figure 7-5, the dashed lines connect the eigenvalues of
the initial design and the solid lines connect the eigenvalues of the
optimized design. (Only eigenvalues with positive imaginary parts are
plotted.)

Our measure of robustness for a compensator is how much the plant
natural frequencies can vary, from their nominal values, before the
closed~loop system becomes unstable; i.e., before some eigenvalue of

Acz has nonnegative real part. The robustness of the closed-loop

eigenvalues was tested by varying the natural frequencies of the plant
by a constant percentage‘times a variation factor (1,0 or -1 for each
natural frequency), while maintaining the original damping of the
plant and the original natural frequencies in the compensator. Tables
7-5 and 7-6 present the robustness test results of the initial and the
optimized closed-loop designs. 1In each one of the robustness tables,
eéch row represents nine closed-loop designs where the natural
frequencies of the plant were perturbed by a percentage (indecated by
a percentage sign %) times a variation factor for each natural
frequency (listed in the left portion of the tables). In these
tables, "." indicates a stable design and "x" indicates an unstable
design. For the initial plant and compensator, Table 7-5 shows that
the closed-loop design becomes unstable for 20% variations in plant
frequencies. For the optimized plant and compensator, Table 7-6 shows
that the closed-loop design becomes unstable for 60% variations in

plant frequencies. Note that we have improved the robustness of the

closed-loop system by factor of three and at the same time reduced the
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Figure 7-2 Unconstrained Minimization (BFGS) Iteration History of the
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INITIAL DESIGN OPTIMIZED DESIGN

J wJ hj wj hJ
1 0.0 1.0000 0.0 0.9160
2 2.1583 1.0000 1.0938 0.6571
3 7.1826 1.0000 3.8530 0.6746
4 15.568 1.0000 8.3850 0.5577
5 29.010 1.0000 15.295 0.5541
6 47.901 1.0000 25.732 0.5550
7 72.399 1.0000 39.379 0.5076
8 103.14 1.0000 56.958 0.4998
9 141.47 1.0000 78.785 0.4862
10 188.23 1.0000 107.67 0.3219
11 235.33 1.0000 143.92 0.2500

Table 7-2 Natural Frequencies and Structural Design Variables of the
Initial and the Optimized Structures. (Connected to 4-mode
compensators. )

weight of the structure by 46%. Note also that the optimized
compensator results in an unstable closed-loop system only when the
variations in plant natural frequencies are such that the first and
the second, or the first and the third natural friquencies cross over.
For each of the above robustness tests, there are 234 variations.

That is

n

N = [n;? -1]n,, (7.26)
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INITIAL DESIGN OPTIMIZED DESIGN

F1i 61 %12 F1 61 632
89.443 247 .57 0.8999 51.652 248.21 1.5785
-47.304 -0.0367 9.4221 -30.796 -0.1230 8.5970
-32.620 -0.0192 -0.9078 -61.482 0.2556 -1.0041
-59.663 -0.0043 -0.6771 -137.45 0.2074 -2.2364
180.96 163.33 0.5941 188.67 163.11 1.5511
-24.166 -0.0802 28.381 -23.670 -0.1944 28.364
-12.218 -0.3183 34.970 -19.625 -0.2851 35.205
-15.399 -0.3109 32.302 -15.326 -0.3317 32.482

Table 7-3. Controller and Observer Gains of the Initial and the
Optimized 4-Mode Compensators.

where
N = 234 is the total number of variations,

n;= 3 is the number of variation factors (1,0 or -1),
n;= 3 is the number of uncertain parameters,
n3= 9 is the number of variation percentages (10%, ..., 90%).

For the initial plant and compensator, 39 variations out of 234 result
in unstable designs and for the optimized plant and compensator, 20

variations out of 234 result in unstable designs.
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OPEN-LOOP CLOSED-LOOP EIGENVALUES
EIGENVALUES
CONTROLLER ESTIMATOR
0.0
-0.5417+i0.5582 -0.9598+i0.5876
0.0

=0.0023%i2.1583

-0.0258+1i7.1826

-0.1212+i15.567

a) Initial Design.

<0.5726+i2.2294

=0.3940+17.1932

-0.5008%i15.575

-2.5781+i5.0525
~9.5443%£112.874

-4.1680%i14.585

OPEN-LOOP CLOSED-LOOP EIGENVALUES
EIGENVALUES
CONTROLLER ESTIMATOR
0.0
-0.4874+10.3632 -1.0429+£i0.5320
0.0

-0.0006+i1.0938

=0.0074*i3.8530

-0.0352+i8.3850

-0.5932%£i0.9629

=0.5933+i3.9054

-0.5082+i8.5587

-0.5963+i2.5730
=1.1779+17.0272

-10.110+i18.828

b) Optimized Design.

Table 7-4. Open-Loop and Closed-Loop Eigenvalues of the Initial and
the Optimized Designs of 4-Mode Compensators.
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Figure 7-5. Open-Loop and Closed-Loop Eigenvalues of the Initial and

the Optimized Designs of 4-Mode Compensators.
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NATURAL FREQUENCY VARIATION PERCENTAGE
VARIATION FACTORS

v, W, w, 10% 20% 30% 4&40% 50% 60% 70% 80% 90%
1 1 1

-1 1 1

1 -1 1 X X X X X

1 1 -1

-1 -1 1 4 x X

-1 1 -1 .

1 -1 -1 X X X X X

-1 -1 -1 X X X

0 1 1

0 1 -1 .

0 -1 -1 X x X . X X
0 -1 1 . X X X . . . X X
1 0 1

1 0 -1

-1 0 -1

-1 0 1

1 1 0 .

1 -1 0 X X X X X

-1 -1 0 X x X
-1 1 0

1 0 0

0 1 0

0 0 1

-1 0 0 .

0 -1 0 X X X X X
0 0 -1 .

Table 7-5. Robustness Test Results of the Initial 4-Mode Plant and
Compensator.

In investigating robustness with respect to unmodeled modes, we
connected the initial four-mode compensator to the initial eleven-mode
plant and the optimized four-mode compensator to the optimized eleven-
mode plant, and performed the robustness test by varying first three
natural frequencies of the plants by a constant percentage times a

variation factor (1,0 or -1 for each natural frequency), while

123




NATURAL FREQUENCY VARIATION PERCENTAGE
VARIATION FACTORS
wz w3 w, 10% 20% 30% 40% 50% 60% 70% 80% 90%
1 1 1
-1 1 1 .
1 -1 1 X X X b4
1 1 -1 X
-1 -1 1
-1 1 -1 .
1 -1 -1 X X b4 X
-1 -1 -1
0 1 1
0 1 -1 X
0 -1 -1 X X
0 -1 1 X b 4
1 0 1
1 0 -1
-1 0 -1
-1 0 1
1 1 0 .
1 -1 0 X b < X X
-1 -1 0
-1 1 0
1 0 0
0 1 0
0 0 1
-1 0 0
0 -1 0 X X
0 0 -1

Table 7-6. Robustness Test Results of the Optimized 4-Mode Plant and
Compensator.

maintaining the original damping of each plant and the original
natural frequencies in each compensator. For the initial plant and
compensator, the results of the robustness test are identical to those
of Table 7-5. For the optimized plant and compensator, the results of
the robustness test are identical to the results in Table 7-6. These

robustness tests indicate that for this example the robustness of the
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initial and the optimized designs are insensitive to the unmodeled
modes, which is partially due to well separated natural frequencies of
the eleven-mode plant.

In comparing the performance of the initial and the optimized
compensators, we use the performance index discribed in Section 3.1,

repeated here for convenience

J=1 [xN(£)Q x(t)+ul (£)R u(t)]dt. (7.27)
P 0 Cc Cc

From (7.27), we see that

Io= T I (7.28)
where
I 1y [xT(t)ch(t)]dt, (7.29)
3= 15 [uT(t)Rcu(t) Jdt. (7.30)

Jx is the quantity we wish to control and Ju is the control effort.
In general, smaller values of Jx for a given initial condition

indicate that the initial state converges faster to the origin (zero
state). Tables 7-7 through 7-10 show the performances of the initial
and the optimized designs for various initial conditions. For the
initial plant &and compensator, Table 7-7 shows the performance of the
four-mode compensator connected to the four-mode plant, and Table 7-8
shows the performance of the four-mode compensator connected to the
eleven-mode plant. (In evaluating the performance of a four-mode

compensator connected to an eleven-mode plant, the terms in matrix Qc
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corresponding to the additional plant modes are zero.) Note that
Tables 7-7 and 7-8 indicate that the performance of the initial
compensator is insensitive to the unmodeled modes of the initial
plant.

For the optimized plant and compensator, Table 7-9 shows the
performance of the four-mode compensator connected to the four-mode
plant, and Table 7-10 shows the performance of the four-mode
compensator connected to the eleven-mode p}ant. These tables indicate
that the performance of the optimized compensator is insensitive to
the unmodeled modes of the optimized plant.

Figures (7-6) - (7-10) show the response of the rigid-body angle
8(t) and the control u(t) for various initial conditions. (All plots
have been scaled so that 0(0)=1.) In each Figure, the dashed lines
represent the time histories corresponding to the initial compensator
connected to the initial eleven-mode plant, and the solid lines
represent the time histories corresponding to the optimized
compensator connected to the optimized eleven-mode plant. (For the
initial and the optimized designs, the response curves of the four-
mode plants connected to the four-mode compensators coincide with
those shown in Figures 7-6 through 7-10.) For the initial design,
Figure 7-6 sho;vs that the settling time of the rigid-body angle is
10.05 seconds, which is 3.45 times the period of the first flexible

open-loop mode (T2=2.91 seconds). For the optimized design, Figure

7-6 shows that the settling time of the rigid-body angle is 9.50

seconds, which is 1.65 times the period of the first flexible open-
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loop mode (T2=5.74 seconds). (The settling time is the time required

for the response curve to reach and stay within *5% of its initial
value.) Note that the overshoot present in the rigid-body angle

response is partially due to the tip mass m, which is as heavy as the

1

initial beam; i.e. m, = 1 slug. Tables 7-8 and 7-10 indicate and

Figuers 7-6 through 7-10 confirm that there is a significant

difference in the performances (value of Jx) of the optimized and the

initial designs. This loss of performance is not entirely due to the
increased robustness of the closed-loop system but it is mainly due to
the significant weight reduction of the structure (46%), and partially

due to the more relaxed constraint on the controller eigenvalues,

(7.2) and (7.19).
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INITIAL INITIAL COST x 10-8
CONDITION | CONDITION

OF THE OF THE

STRUCTURE ESTIMATOR J J

P x u
1st mode 1st mode 2.6922 2.3086 0.3836
1st mode 0 4.8357 3.5515 1.2842
2nd mode 0 0.0601 0.0278 0.0323
3rd mode 6] 0.0630 0.0238 0.0392
4th mode 0 0.4174 0.2495 0.1679
Table 7-7. Performance of the 4-Mode Initial Compensator Connected

to the 4-Mode Initial Plant for Various Initial Conditions.

INITIAL INITIAL COST x 10-8 RESPONSE
CONDITION CONDITION OF THE

OF THE OF THE RIGID-BODY
STRUCTURE ESTIMATOR Jp Jx Ju ANGLE

1st mode 1st mode 2.6923 2.3101 0.3822 Fig. 7-6
1st mode 0 4.8333 3.5527 1.2806 Fig. 7-7
2nd mode 0 0.0598 0.0279 0.0319 Fig. 7-8
3rd mode 0 0.0627 0.0239 0.0388 Fig. 7-9
4th mode 0 0.4170 0.2507 0.1663 Fig. 7-10

Table 7-8. Performance of the 4-Mode Initial Compensator Connected

to the 11-Mode Initial Plant for Various Initial Conditions.
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INITIAL INITIAL COST x 10-8
CONDITION CONDITION

OF THE OF THE

STRUCTURE ESTIMATOR J J J

P X u

1st mode 1st mode 3.6373 3.5626 0.0747
1st mode 0] 7.7451 7.3773 0.3678
2nd mode 0 0.0575 0.0337 0.0238
3rd mode 0 0.0561 0.0259 0.0302
4th mode 0 0.3533 0.2504 0.1029

Table 7-9. Performance of the 4-Mode Optimized Compensator Connected
to the 4-Mode Optimized Plant for Various Initial Conditions.

INITIAL INITIAL COST x 10-8 RESPONSE
CONDITION | CONDITION OF THE
OF THE OF THE RIGID-BODY
STRUCTURE | ESTIMATOR Jp Jx Ju ANGLE
1st mode 1st mode 3.6391 3.5648 0.0743 Fig. 7-6
1st mode 0 7.7373 7.3709 0.3664 Fig. 7-7
2nd mode 0 0.0576 0.0338 0.0238 Fig. 7-8
3rd mode 0 0.0562 0.0260 0.0302 Fig. 7-9
4th mode 0 0.3590 0.2566 0.1024 Fig. 7-10

Table 7-10. Performance of the 4-Mode Optimized Compensator

Connected to the 11-Mode Optimized Plant for Various Initial
Conditions.
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7.2.2 Five-Mode Compensator Example

To demonstrate the trade off between the control objective

JC(F,G,h) and the structural weight W(h) minimization, consider the

initial design of Sec. 6.3 for three optimization problems where the
objective functions are constructed with « = 2, 4 and 6 in (7.1).
Since we use the ten element model of the structure, we have 11
structural design variables (the heights of the cross sections at the
beam nodes). Also, we have the 1X10 control gain matrix F and the
10X2 estimator gain matrix G, so that there are 30 control design
variables. Therefore, we have a total of 11+30 = 41 design variables.
The scalar weighting factors and lower bounds and upper bounds in

(7.1)-(7.6) are

Re(xc)“= 0.90XRe[X_(Fo,hq)] i=1, ..., 2n, (7.31)
i i
Re(xe)“= -0.40 i=1, ..., 2n, {7.32)
i
3 o
Im(A )= 0.20 i=1, ..., 2n, (7.33)
i
Im(xe)“= 0.20 i=1, ..., 2n, (7.34)
i
T, = max [r—s L g i=1, ..., 4n
i IRe(X )] * [Im(X_ T : ’ ’ (7.35)
cl’ cl’
1 1
n*= 0.25 i =1 (7.36
i v i1=1, ) nS’ .36)
h'= 3.0 =1 (7.37
i3 i=1, s M. .37)
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Note that (7.31) indicates that the magnitude of the real part of the
controller eigenvalues can decrease by 10% only.

Each of the optimized designs were obtained by using the ADS
optimizer (Ref. V2), where the sequential unconstrained minimization
technique (SUMT) using the exterior penalty function method, and
Broydon-Fletcher-Goldfarb-Shanno (BFGS) variable metric method for
unconstrained minimization of pseudo-objective function (created by
the exterior penalty function method) were selected, see [V1]. Also,
the 41 design variables were scaled by the ADS program, and finite
difference gradients were used in the optimization problems. Each of
the three optimization problems converges in 1 SUMT iteration which
includes fewer than 35 unconstrained minimization (BFGS) iterations.
The constraint on the real part of the controller eigenvalues (7.31)
and the side constraint corresponding to the height of the cross-
section at the last beam node (tip end) are active for all three
optimized designs. Table 7-11 shows the numerical values of the
control objective functions and the structural weights. In general,
larger values of a result in more structural weight and less control
objective function reduction. However, there are some exceptions due
to the complexity of the numerical optimization and nonlinearity of
the objective function. Figure 7-11 shows the initial and the three
optimized substructures (beams). The initial substructure is drawn in
dashed line and an optimized substructure is drawn in solid line.

(Only the portion of a beam over the center-line is shown.)
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INITIAL DESIGN OPTIMIZED DESIGN ITERATION

CASE | a HISTORY
FIGURE
W J J L J J
c c

A 2 | 1.000 10.60 | 3.000 | 0.664 | 3.418 1.651 -
B 4 | 1.000 10.60 | 5.000 | 0.658 | 6.750 | 3.267 -
c 6 | 1.000 10.60 | 7.000 | 0.651 | 7.722 | 4.635 |7-12,7-13

Table 7-11. Control Objective and Structural Weigth of the Initial
and Three Optimized Designs with 5-Mode Compensators.

- - - INITIAL BERM
OPTIMIZED BERM

'
1
1
i
e . p— —_— -—

(A)

cr-TTTr-TTTrTTTTTrTTTTTTTTSTTTTYTTTTTYITTTTYITTTTAOASTTTA

(B)
ittt 2 Mt S Sty Shaiaiiaiiadie S Saeataiie S
:"::'J\;
(C)

Figure 7-11. The Initial and Three Optimized substructures (Beams).
(A) a =2, (B) a =4, (C) a =6. (5-mode compensators.)
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To see the effect of first-order closed-loop eigenvalue
sensitivity and structural weight optimization on robustness, consider
for example Case C (a=6) of the three optimized designs. For this
case, the optimization converges in 1 SUMT iteration which includes 27
unconstrained minimization (BFGS) iterations. Figure (7-12) shows the
unconstrained minimization (BFGS) iteration history of the objective
function where J(F,G,h) (normalized with respect to it initia value
7.0) 1is reduced by 34%. Figure (7-13) shows the unconstrained
minimization (BFGS) iteration histories of the control objective

function and the structural weight, where JC(F,G,h) (normalized with

respect to it initia value 10.60) is reduced by 27% and W(h)
(normalized with respect to it initia value 1.0) is reduced by 35%

Table 7-12 lists the natural frequencies and the structural design
variables of the initial and the optimized structures, Table 7-13
lists the control design variables of the initial and the optimized
compensators. Figure 7-14 shows the first three flexible mode-shapes
of the initial and the optimized structures. In this figure, nodes of
the initial structure are marked with squares and nodes of the
optimized structure are marked with circles. Note that Fig. 7-12 also
shows the increased flexibility of the optimized design due to its
significant weight reduction. Table 7-14 and Figure 7-15 show the
open-loop and the closed-loop eigenvalues of the initial and the
optimized designs. In Figure 7-15, the dashed lines connect the
eigenvalues of the initial design and the solid lines connect the

eigenvalues of the optimized design. (Only eigenvalues with positive
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imaginary parts are plotted.)

Our measure of robustness for a compensator is how much the plant
natural frequencies can vary, from their nominal values, before the
closed-~loop system becomes unstable; i.e., before some eigenvalue of

Acl has nonnegative real part. The robustness of the closed-loop

eigenvalues was tested by varying the natural frequencies of the plant
by a constant percentage times a variation factor (1,0 or -1 for each
natural frequency), while maintaining the original damping of the
plant and the original natural frequencies in the compensator. Tables
6-6 and 7-15 present the robustness test results of the initial and
the optimized closed-loop designs. In each of the robustness tables,
each row represents nine closed-loop designs where the natural
frequencies of the plant were perturbed by a percentage (indecated by
a percentage sign %) times a variation factor for each natural
frequency (listed in the left portion of the tables). In these
tables, "." indicates a stable design and "x" indicates an unstable
design. For the initial plant and compensator, Table 6-6 shows that
the closed-loop design becomes unstable for 20% variations in plant
frequencies. For the optimized plant and compensator, Table 7-15
shows that the closed-loop design becomes unstable for 60% variations
in plant frequencies. Note that we have improved the robustness of
the closed-loop system by factor of three and at the same time reduced
the weight of the structure by 35%. Note also that the optimized
compensator results in an unstable closed-loop system only when the

variations in plant natural frequencies are such that the first and
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Figure 7-12 Unconstrained Minimization (BFGS) Iteration History of
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INITIAL DESIGN OPTIMIZED DESIGN
j uJ hj wJ hJ

1 0.0 1.0000 0.0 1.0910

2 2.1583 1.0000 1.3080 0.8750

3 7.1826 1.0000 4.7698 0.5979

4 15.568 1.0000 10.739 0.6823

5 29.010 1.0000 20.427 0.6038

6 47.901 1.0000 32.388 0.5889

7 72.399 1.0000 48.014 0.6946

8 103.14 1.0000 69.172 0.6335

9 141.47 1.0000 95.028 0.5796

10 188.23 1.0000 132.00 0.5842
11 235.33 1.0000 166.16 0.2500

Table 7-12 Natural Frequencies and Structural Design Variables of the
Initial and the Optimized Structures. (5-mode compensators. )
the second, or the first and the third natural friquencies cross over.
For each of the above robustness tests, there are 720 variations (see
Eqn. 6.32). For the initial plant and compensator, 226 variations out
of 720 result in unstable designs and for the optimized plant and
compensator, 59 variations out of 720 result in unstable designs.

In investigating robustness with respect to unmodeled modes, we

connected the initial five-mode compensator to the initial eleven-mode
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INITIAL DESIGN OPTIMIZED DESIGN
I Fyy 631 652 13 €1 G2
1 89.443 247.57 0.7453 86.638 247 .34 0.8082
2 -47.212 -0.0360 9.9207 -22.927 -0.0360 9.8931
3 -32.144 -0.0251 -0.3027 -99.,311 -0.0253 -0.3135
4 -56.023 -0.0028 0.0944 -11.910 -0.0041 0.0265
5 -90.007 -0.0131 0.7929 -316.34 -0.0111 0.7235
6 181.06 163.33 0.5014 180.42 163.22 0.3514
7 -24.205 -0.0593 27.796 -23.557 -0.0542 27.792
8 -12.242 -0.3045 35.710 -12.146 -0.3023 35.704
9 ~15.444 -0.3024 34,285 -19.401 -0.3005 34.285
10 -17.147 -1.2148 136.14 -26.571 -1.2141 136.14
Table 7-13. Controller and Observer Gains of the Initial and the

Optimized 5-Mode Compensators.

plant and the optimized five-mode compensator to the optimized eleven-
mode plant, and performed the robustness test by varying first three
natural frequencies of the plants by a constant percentage times a
variation factor (1,0 or -1 for each natural frequency), while
maintaining the original damping of each plant and the original
natural frequencies in each compensator. For the initial plant and
compensator, the results of the robustness test are identical to those

of Table 6-6. For the optimized plant and compensator, the results of
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a)

OPEN-LOOP CLOSED-LOOP EIGENVALUES
EIGENVALUES
CONTROLLER ESTIMATOR
0.0
-0.5415%1i0.5580 -0.9598+i0.5876
0.0

-0.0023%£12.1583
-0.0258+17.1826
-0.1212+i15.567
-0.4208+£i29.007

Initial Design.

-0.5721+i2.2293

=-0.3937+i7.1932

-0.5001+i115.575

=0.7097+£i29.012

=2.5932%1i5.0472

-8.0933+i12.011

-3.9348%+i15.290

-8.5054%i29.711

OPEN-LOOP CLOSED-LOOP EIGENVALUES
EIGENVALUES
CONTROLLER ESTIMATOR
0.0
-0.4874+i0.7234 -1.0192+i0.5535
0.0

-0.0009+1i1.3080

-0.0114%i4.7698

-0.0577+£i10.739

-0.2086£i20.426

-0.5269+i1.0556

-0.4824+i5.0990

-0.4638+1i10.642

=0.7197+i20.586

=1.0520%i3.2532
-1.9676%19.1562
-4.1895%114.508

-16.985+120.570

b) Optimized Design.

Table 7-14. Open-Loop and Closed-Loop Eigenvalues of the Initial and
the Optimized Designs of 5-Mode Compensators.
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the robustness test are identical to the results in Table 7-15. These
robustness tests indicate that for this example the robustness of the
initial and the optimized designs are insensitive to the unmodeled
modes, which is partially due to well separated natural frequencies of
the eleven-mode plant.

In comparing the performance of the initial and the optimized
compensators, we use the performance index in (6.33) where

Jp= Jx+ Ju. (7.38)

For the initial plant and compensator, Table 6-9 shows the performance
of the five-mode compensator connected to the five-mode plant, and
Table 6-10 shows the performance of the five-mode compensator
connected to the eleven-mode plant. These tables indicate that the
perfofmance of the initial compensator is insensitive to the unmodeled
modes of the initial plant.

For the optimized plant and compensator, Table 7-16 shows the
performance of the five-mode compensator connected to the five-mode
plant, and Table 7-17 shows the performance of the five-mode
compensator connected to’'the eleven-mode plant. These tables indicate
that the performance of the optimized compensator is insensitive to
the unmodeled modes of the optimized plant.

Figures (7-16) - (7-21) show the response of the rigid-body éngle
8(t) and the control u(t) for various initial conditions. (All plots
have been scaled such that 8(0)=1.) In each Figure, the dashed lines
represent the time histories corresponding to the initial compensator

connected to the initial eleven-mode plant, and the solid lines
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represent the .time histories corresponding to the optimized
compensator connected to the optimized eleven-mode plant. (For the
initial and the optimized designs, the response curves of the five-
mode plants connected to the five-mode compensators coincide with
those shown in Figures 7-16 through 7-21.) For the initial design,
Figure 7-16 shows that the settling time of the rigid-body angle is
10.05 seconds, which is 3.45 times the period of the first flexible

open-loop mode (T2=2.91 seconds). For the optimized design, Figure

7-16 shows that the settling time of the rigid-body angle is 13.15
seconds, which is 2.74 times the period of the first flexible open-

loop mode (T2=4.80 seconds). (The settling time is the time required

[

of its initial

<

for the response curve to reach and stay within *5%
value.) Note that the overshoot present in the rigid-body angle

response is partially due to the tip mass m, which is as heavy as the

initial beam; i.e. m, = 1 slug. Tables 6-10 and 7-17 indicate and

Figuers 7-16 through 7-21 confirm that there is a significant

difference in the performances (value of Jx) of the optimized and the

initial designs. This loss of performance is not entirely due to the
increased robustness of the closed-loop system but it is mainly due to
the significant weight reduction of the structure (35%), and partially
due to the more relaxed constraint on the controller eigenvalues,
(7.2) and (7.31). In comparing this optimized compensator/structure
design with Case C of Section 7.2.1, we see that both designs can

tolerate at least 50% variations in their plant natural frequencies.
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Also, due to significantly different performance of the 5-mode
compensators, we obtain less weight reduction here compared to the 46%

structural weight reduction in section 7.2.1
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INITIAL INITIAL COST x 10-8
CONDITION | CONDITION
OF THE OF THE
STRUCTURE | ESTIMATOR J J
p b4 u
1st mode 1st mode 3.7502 3.4771 0.2731
1st mode 0 10.6536 9.7981 0.8555
2nd mode 0 0.0938 0.0363 0.0575
3rd mode 0 0.1028 0.0356 0.0672
4th mode 0 0.5475 0.3777 0.1698
5th mode 0 4.2898 3.2714 1.0184
Table 7-16. Performance of the 5-Mode Optimized Compensator
Connected to the 5-Mode Optimized Plant for Various Initial
Conditions.
INITIAL INITIAL COST x 10-8 RESPONSE
CONDITION CONDITION OF THE
OF THE OF THE RIGID-BODY
STRUCTURE ESTIMATOR Jp Jx Ju ANGLE
lst mode 1st mode 3.7495 3.4768 0.2727 Fig. 7-16
1st mode 0 10.6481 9.7931 0.8550 Fig. 7-17
2nd mode 0 0.0925 0.0363 0.0562 Fig. 7-18
3rd mode 0 0.1017 0.0356 0.0661 Fig. 7-19
4th mode 0 0.5453 0.3772 0.1681 Fig. 7-20
5th mode 0 4.3171 3.3106 1.0065 Fig. 7-21
Table 7-17. Performance of the 5-Mode Optimized Compensator
Connected to the 11-Mode Optimized Plant for Various Initial
Conditions.
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Chapter Vil

CONCLUSIONS

The numerical results for tﬁe example of Chapter 5 illustrate the
significant effect that the closed-loop eigenvalue sensitivity derived
in Section 5.1 has on robustness with respect to modeling errors. The
results in Section 5.2 suggest and the example confirms that controller
and estimator eigenvalues should be separated for a robust design.
Almost 1linearly dependent estimator eigenvectors or controller
eigenvectors diminish robustness also.

In the example, we chose to move the estimator eigenvalues to the
left of the controller eigenvalues. While such relative placement
of controller and estimator eigenvalues is used frequently in
compensator design so that the faster decaying estimator error will
make the compensator approximate full-state feedback, we have seen
no mention in the literature of the relationship demonstrated here
between controller/estimator eigenvalue location and robustness. We
have found that, to improve robustness by reducing closed-loop
eigenvalue sensitivity, the eigenvalue separation may be achieved as
well by placing some or all of the controller eigenvalues sufficientily
to the left of nearby estimator eigenvalues or, not surprisingly, by
separating imaginary parts of eigenvalues. This is important in

controlling complex flexible structures, which often have 1lightly
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damped modes along with heavily damped modes, making it impractical
to place all estimator eigenvalues to the left of all controller
eigenvalues.

For a fixed structure, the numerical results for the example of
Chapter 6 demonstrate that first-order sensitivity optimization of the
closed-loop eigenvalues can significantly increase the robustness of
the initial closed-loop design (LQG). In the example, the robustness
of the optimized design is better than the robustness of the full-state
feedback initial and optimized designs, and the optimized compensator
results in an unstable closed-loop system only when the variations in
natural frequencies are such that the first and the second natural
frequencies cross over. Although we have improved the robustness of
the initial design by a factor of three, there is no significant
difference in the performances of the optimized and the initial
compensators for tne nominal plant parameters.

The numerical results of Sections 7.2.1 and 7.2.2 demonstrate the
effectivness of the first-order sensitivity and structural weight
optimization for simultaneously reducing the structural weight and
increasing the robustness of the initial LQG compensator/structure
designs. For each of these examples, the robustness of the optimized
compensator/structure design is better than the robustness of the
full-state feedback initial and optimized designs, and the optimized
compensator/structure design result in an unstable closed-loop system
only when the variations in the plant natural frequencies are such that
the first and the second, or the first and the third natural frequencies

cross over. As illustrated by these examples, the amount of structural
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weight reduction is a strong function of desired performance. In
addition, the loss of performance in the optimized
compensator/structure designs is not entirely due to the increased
robustness (factor of 3), but it is mainly due to the significant weight
reduction of the structures. To maintain the high-performance of the
initial compensator/structure design, we recommend inclusion of a

quadratic performance measure in the objective function of Chapter 7.
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Appendix A
DERIVATIVES OF EIGENVALUES AND EIGENVECTORS
WITH RESPECT TO A PARAMETER
Here we summarize some standard results involving derivatives of

eigenvalues and eigenvectors of a matrix with respect to a

parameter. To simplify the discussion while covering almost all

applications that interest us, we assume that all eigenvalues are

simple. We use the following notation:

A = an nXn matrix
Xj (j =1,..., n) = an eigenvalue of A
xj = an eigenvector corresponding to Xj
yj = a left eigenvector corresponding to Xj
A = the nxn diagonal matrix containing the eigenvalues kj
. .th , :
X = the nXn matrix whose j column is X, (j=1,..., n)
. .th . .
Y = the nxn matrix whose j column is yj (j=1,..., n)
AB= the derivative of A with respect to a parameter B
X. = the derivative of A\, with respect to B
ig J
A5= the nxn diagonal matrix containing Xj (j=1, ..., n)
B
X. = the derivative of x, with respect to B
JB J
Xj = the second derivative of Xj with respect to B
BB

I = the nxn identity matrix
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We have then

Ax.= X .x,, A.l
J JxJ ( )
and
T T
A= )y.,. A.2
Y5 JYJ (A.2)

Also, we assume that the eigenvectors are normalized so that

”

T T
X.,x,=y.x.= 1. A.3
J ] yJ J ( )

From (A.1) - (A.3), it follows that

vi= x71, (A.4)

The First Derivatives of the Eigenvalues

In the standard way, we differentiate (A.1) with respect to B to

obtain

+ - = .
Aﬁxj [A IXj]xj Xj X. , (A.5)

g JgJ

and multiply this equation on the left by y§ to obtain

T
A= y.A x., i =1, ..., n. A.6
ig Y5%8%5 ] (A.6)

In matrix form,

PR, S
Ag= diag[Y AgX]; (A.7)

i.e., AB is the diagonal matrix whose diagonal terms are equal to the

diagonal terms of [YTABX].
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The First Derivatives of the Eigenvectors

From here on, we assume that the eigenvalues are distinct. We

move the first term on the right side of (A.5) to the left side and

then multiply the equation on the left by X-1 to obtain

x“la-mn T x = -xTla - T, k..
J ig B ig 3

Since
x"1ax = A,

(A.8) becomes

-1 -1
-IX, ., = - A, ~-TX, ..
[A-T2]X xJB X" [Ag-T JB]XJ

Next, we define the n-vector

q; =[4q;; q 9, 1
ig 1JB 2ig ig
so that
x, = Xq. .
Jg g

From (A.4), (A.6) and (A.10), we see

T
yv.A x,
q = ___E_E_J_. , i#j,

1JB “i- XJ]

and, in view of (A.3), we must choose qjj so that

B
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The Second Derivatives of the Eigenvalues
Here, we assume that A is linear in B. Hence,
= 0. ’ .
ABB (A.15)
Differentiating (A.5) with respect to B and multiplying the resulting

equation by y§ on the left yields

T. < . T .
. = . -IX, . = 2y.[A_-IX,.
A 2y 1AB AJBJxJB yJ[ B J]Xq

. . (A.16)
Jgg -7 g I

(Recall (A.2), (A.3) and (A.12).) In view of (A.4), (A.6) and (A.13),

(A.16) yields

n T T
\, = 23§ | R A (A.17)
g8 i=1

i#j [Xi- Xj]
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Appendix B
COMPARISION OF ANALYTIC
AND FINITE DIFFERENCE GRADIENTS

Here we compare the analytic and the first forward finite
difference gradients of the initial design of Section 6.3. For the
gradient of the objective function (6.9), Tables B-1 list the partial
derivatives with respect to the elements of the 1Xx10 control gain
matrix F and 10X2 estimator gain matrix G. For the gradients of the
constraint equations (6.9) - (6.12), Tables B-2 and B-4 1list the
partial derivatives with respect to the elements of the control gain
matrix F only since the controller eigenvalues are independent of the
estimator gain matrix G. Tables B-3 and B-5 1list the partial
derivatives with respect to the elements of the estimator gain matrix
G only since the estimator eigenvalues are independent of the control
gain matrix F. In these tables, design variables 1-10 correspond to
the elements of the control gain matrix F (F(1,1)=D.V. number 1,
F(1,10)=D.V. number 10), design variables 11-20 correspond to the
first column of the estimator gain matrix G which are related to the
rigid-body angle 8(t) measurement (G(1,1)=D.V. number 11, G(10,1)=D.V.
number 20), and design variables 21-30 correspond to the second column
of the estimator gain matrix G which are related to the displacement

of the point mass m, w(t,2) measurement (G(1,2)=D.V. number 21,

G(10,2)=D.V. number 30). Also, FDCH indicates the relative finite

difference step when calculating gradients, and 0.0 indicates less

than 10-6, see [V2].
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When we use the unscaled design variables in the optimization
problem of Sec. 6.3 (with Method of Feasible Directions), analytic and
finite difference gradients yield similar optimized designs. However,
when we use the scaled design variables in the optimization problem of
Sec. 6.3 (with Method of Feasible Directions), analytic gradients
cause the violation of the constraint equations (6.10) and (6.12) due

to the truncation errors shown in Tables B-3 and B-5.
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Table B-1. Analytic and Finite Difference Gradients of the Objective

Function (6.8).
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DESIGN FINITE DIFFERENCE ANALYTIC
VARIABLE GRADIENT GRADIENT
NUMBER
FDCH = 0.01 FDCH = 0.001
1 0.02284 0.02297 0.02300
2 -0.06532 -0.06541 -0.06540
3 0.06289 0.06275 0.06281
4 0.01945 0.01936 0.01942
5 0.00487 0.00480 0.00487
6 0.01201 0.01244 0.01250
7 ~0.21456 -0.21475 -0.21465
8 0.04299 0.04026 0.04057
9 0.03427 0.03388 0.03407
10 0.11104 0.11055 0.11079
11 0.01186 0.01167 0.00737
12 -0.00332 -0.00474 -0.00285
13 0.00758 0.0 0.01028
14 0.00758 0.0 0.01239
15 0.0 0.0 0.00106
16 0.00253 0.00227 0.00678
17 -5.00047 -0.00474 -0.00037
18 0.0 0.0 0.00112
19 0.0 0.0 0.00037
20 0.0 0.0 0.00010
21 =0.44261 -0.44318 -0.44267
22 0.53198 0.52815 0.52885
23 -0.11977 -0.11743 -0.11649
24 -0.99714 -1.00000 ~0.99642
25 0.27351 0.26777 0.27352
26 -0.65388 -0.65501 ~0.65491
27 0.06828 0.06684 0.06679
28 -0.16013 ~0.16642 -0.16711
29 -0.05191 =0.05247 -0.05256
30 -0.01320 -0.01300 -0.01298
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DESIGN FINITE DIFFERENCE ANALYTIC
VARIABLE GRADIENT GRADIENT
NUMBER
FDCH = 0.01 FDCH = 0.001
1 -0.00203 -0.00196 -0.00202
2 0.01045 0.01037 0.01048
3 0.04233 0.04244 0.04229
4 -0.00331 -0.00312 -0.00328
5 -0.00054 0.0 -0.00055
6 0.00344 0.00348 0.00341
7 -0.01676 -0.01734 -0.01693
8 0.99857 1.00000 0.99864
9 0.00883 0.00906 0.00881
10 0.00143 0.0 0.00139
Table B-2. Analytic and Finite Difference Gradients
Constraint Equation (6.9).
DESIGN FINITE DIFFERENCE ANALYTIC
VARIABLE GRADIENT GRADIENT
NUMBER
FDCH = 0.01 FDCH = 0.001
11 -1.00000 -0.99961 -0.99997
12 0.0 0.0 -0.00219
i3 0.0 6.0 0.03735
14 0.0 0.0 0.00279
15 0.0 0.0 0.00047
16 0.0 0.0 0.00000
17 0.0 0.0 0.00177
18 0.0 0.0 -0.03048
19 0.0 6.0 -0.00273
20 0.0 0.0 -0.00112
21 0.0 0.0 -0.00301
22 0.0 0.0 -0.00001
23 0.0 0.0 0.00011
24 0.0 0.0 0.00001
25 0.0 0.0 0.00000
26 0.0 0.0 0.00000
27 0.0 0.0 0.00001
28 0.0 0.0 -0.00009
29 0.0 0.0 -0.00001
30 0.0 0.0 -0.00000
Table B-3. Analytic and Finite Difference Gradients

Constraint Equation (6.10).
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DESIGN FINITE DIFFERENCE ANALYTIC
VARIABLE GRADIENT GRADIENT
NUMBER
FDCH = 0.01 FDCH = 0.001

1 -0.99434 -0.99881 -1.00000

2 -0.02778 -0.02925 -0.02918

3 -0.01418 -0.01289 -0.01429

4 -0.00271 0.0 -0.00270

5 -0.00046 0.0 -0.00054

6 0.46823 0.45985 0.45924

7 0.35882 0.35938 0.35966

8 0.05527 0.05640 0.05556

9 0.00983 6.0 0.01003

10 0.00242 0.0 0.00200
Table B-4. Analytic and Finite Difference Gradients of the

Constraint Equation (6.11).
DESIGN FINITE DIFFERENCE ANALYTIC
VARIABLE GRADIENT GRADIENT
NUMBER
FDCH = 0.01 FDCH = 0.001

11 0.97789 0.96165 0.95976

12 0.0 0.0 -0.00014

13 0.0 0.0 0.00174

14 0.0 0.0 0.00034

15 0.0 0.0 0.00035

16 -0.99094% -0.99917 -1.00000

17 0.0 0.0 -0.00050

18 0.0 0.0 0.00967

19 0.0 0.0 0.00084%

20 0.0 0.0 0.00034

21 0.0 0.0 0.00288

22 0.0 0.0 -0.00000

23 0.0 0.0 0.00001

24 0.0 0.0 0.00000

25 0.0 0.0 0.00000

26 0.0 6.0 -0.00301

27 0.0 0.0 -0.00000

28 0.0 0.0 0.00003

29 0.0 0.0 0.00000

30 0.0 0.0 0.00000
Table B-5. Analytic and Finite Difference Gradients of the

Constraint Equation (6.12).
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